Пример матрицы данных типа


Читайте также:
  1. B. Загрузка моментального снимка данных на ПК.
  2. B. интегрированная совокупность данных, предназначенная для хранения и многофункционального использования
  3. B. Перечнем названий полей с указанием их типов и других дополнительных свойств данных, содержащихся в них
  4. C. немедленное и автоматическое сохранение измененных данных
  5. C. Отображение моментального снимка данных при помощи функции “Snapshot Upload” TIS 2000.
  6. Case-средства для моделирования данных.
  7. D. ввода данных и наглядного отображения их на экране
  8. DLC (разъем канала передачи данных)
  9. Ethernet — пример стандартной технологии
  10. Excel в качестве источника и приемника данных.
  11. I. Примеры неподлинных или устаревших принципов пространства
  12. I. Сортировка данных

«респонденты х переменные»


«Случай»   1-й респондент     2-й респондент   ……   2000-й респондент  
Переменная  
Пол мужской женский ……. мужской
Возраст 38 лет 23 года ……. 62 года
Семейный статус разведен замужем ……. вдовец
Судимость отсутствует отсутствует ……. 2 судимости
Партийная конституционный беспартийная ……. христианский
принадлежность демократ     социалист

 

Обычно единицами анализа, т. е. теми, кого исследуют, бывают именно люди. Однако единицами анализа могут быть и семьи, и организации, и регионы, и государства. Например, в матрице данных столбцы могли бы соответствовать городам, а строки — переменным типа «уровень пре­ступности», «население», «число безработных» и т. п. Некоторые из пе­ременных были бы получены путем агрегирования, «объединения», ин­дивидуальных данных (например, о наличии дополнительных источни­ков дохода), другие характеризовали бы город как целое (наличие аэропортов, доля прямых налоговых поступлений в бюджете). В любом случае исследователю нужно заранее представить себе, как будет выг­лядеть матрица данных и какие приемы анализа он собирается к ней применить. Любое конкретное исследование может предполагать и использование различных единиц анализа, т.е. полученная в нем эмпирическая инфор­мация может характеризовать и отдельных индивидов, и семьи, и — в результате использования агрегированных показателей — регионы или государства. Важно лишь, чтобы все единицы анализа, которые вы на­мерены использовать, были определены заранее. В ином случае в мат­рице данных «единица анализа х переменная» неизбежно возникнут про­пуски или дублирование одной и той же информации. Так как количе­ство матриц данных равно количеству предполагаемых единиц анализа (хотяразмерность их будет разной[3]), можно заранее создать соответствую­щее количество отдельных массивов данных (файлов), содержащих те данные, которые относятся к данной единице анализа. Скажем, сведения о возрасте по­падут в массив «респонденты», а сведения о составе семьи — в массив «семьи» (даже если последние и были получены в результате беседы с одним из членов семьи).



Описанная выше двумерная матрица данных типична для одномоментного, «срезового» исследования, характеризующего ситуацию в момент опроса. Целью такого исследования может быть, во-первых, описание распределения каких-то переменных в совокупности. Например, мы можем узнать, сколько человек со­бирается проголосовать за демократов при условии, что выборы будут проведе­ны тотчас же (типичный «гэллаповский» опрос). Во-вторых, мы можем попы­таться использовать «срезовые» данные для характеристики отдельных подвыборок — например, «работающих пенсионеров», «высококвалифицированных рабочих в возрасте от 30 до 45 лет» и т. п. Далее, применяя различные методы статистического анализа, можно проверить какие-то гипотезы о взаимосвязи переменных (в данный момент времени). В последнем случае исследование становится объяснительным. Однако даже в чисто описательном исследовании мы столкнемся с необходимостью каких-то сравнений, делающих полученные нами оценки осмысленными. Если, например, мы узнаем, что 15% подростков читают медицинские журналы не реже 1 раза в месяц, то для того, чтобы по­нять много это или мало, нам нужно будет с чем-то сопоставить этот показа­тель. Скажем, мы можем сравнить подростков 1994 года с подростками 1954 года. (Конечно, нам предварительно придется найти данные соответствующего оп­роса 40-летней давности.)

Изменениям во времени подвержены не только отдельные показатели, но и вза­имоотношения между переменными. Так, глобальные социально-экономичес­кие изменения — экономический кризис, сдвиг в социально-классовой струк­туре — могут привести к тому, что высокая зависимость дохода от продолжи­тельности образования станет незначимой. Следовательно, изучение сложного причинного механизма воздействия образовательного уровня на доходы требу­ет какой-то серии разделенных во времени обследований, позволяющих про­следить динамику интересующего нас отношения под влиянием существенных внешних переменных.

Исследовательские планы, позволяющие анализировать данные во временной перспективе, называют лонгитюдными. Данные получают многократно, в раз­ные моменты времени, причем цели исследования могут быть сугубо дескрип­тивными (доля голосующих за коммунистов, распределение положительных и отрицательных установок по отношению к «мыльным операм») и объяснитель­ными.

Принято выделять основные виды лонгитюдных планов, каждый из которых имеет множество модификаций и «переходных» форм. Это трендовые, когортные и панельные исследования.

Трендовые обследования ближе всего к уже описанным однократным, «срезовым», опросам. Некоторое авторы даже предлагают обозначать их просто как регулярные опросы, т. е. опросы, проводимые через более или менее равные промежутки времени[4]. В трендовом опросе одна и та же генеральная совокупность изучается в разные моменты времени, причем каждый раз выборка стро­ится заново. Иными словами, анализируются последовательные выборки из одной и той же совокупности. Например, опрос Института Гэллапа, проводи­мый ежемесячно в ходе избирательной компании, является трендовым обсле­дованием, показывающим динамику установок населения по отношению к кан­дидатам или партиям. Строго говоря, если количество тех, кто собирается голо­совать за кандидата X, за месяц увеличилось на 16%, мы можем лишь зафиксировать изменение картины предпочтений избирателей, но не можем наверняка утверждать, что определенная группа избирателей изменила свои предпочтения, так как в двух последовательных опросах мы имеем дело с раз­ными респондентами. Преимуществом оперативных трендовых исследований является возможность «привязки» наблюдаемых изменений к текущим собы­тиям — политическим скандалам, решениям правительственных органов, изменениям в финансово-экономической ситуации, — что облегчает их интерпре­тацию.

Однако, например, ежегодные исследования занятости и безработицы, прово­димые по этому плану, могут привести к трудно интерпретируемым результа­там. Если в результате двух таких исследований окажется, что социально-де­мографические характеристики людей, получающих пособие, почти не изме­нились, будет большой неосторожностью утверждать, что существует какая-то «типичная» группа людей, постоянно живущая на средства налогоплательщи­ков. Вполне вероятно, что большинство респондентов, охваченных первым оп­росом, уже нашли работу.

В качестве особого исследовательского плана иногда рассматривают когортные обследования. Основания для выделения этого плана несколько условны и связаны скорее с теоретической логикой интерпретации (а не сбора) данных. Если в трендовых исследованиях отбор каждый раз производится из общей со­вокупности — всех избирателей, всех семей и т.п., — то, исследуя «когорты» (от лат. cohors (cohortis) — подразделение, видовая группа), мы каждый раз про­изводим отбор из одной специфической совокупности, стремясь проследить пе­ремены в ее поведении, установках и т. п. Пусть, например, мы изучали ценно­стные ориентации десятиклассников в 1985 году, а в 1995 году нам захотелось снова опросить бывших десятиклассников, так как мы предполагаем, что их ценностные ориентации изменились с переходом в иную стадию жизненного цикла (создание собственной семьи, формирование профессиональной идентичности и т. п.). В этом случае мы будем работать с новой выборкой из пре­жней специфической совокупности, сравнивая представителей одной и той же «когорты» с десятилетним интервалом, а не десятиклассников 1985 года с деся­тиклассниками 1995 года (в последнем случае можно было бы говорить о трен­довом исследовании десятиклассников).

Самым совершенным воплощением идеи введения временной перспективы в исследовательский план является панельное обследование. Если вернуться к нашей структурированной матрице данных (см. табл. 5.1), то можно сказать, что панель — это прибавление к двумерной матрице еще одного измерения, превращающего ее в пределе в некий «параллелепипед» данных. Панельные ис­следования позволяют не только зафиксировать какие-то социальные измене­ния в установках, поведении и т. п., но и выявить причины и последствия этих изменений на микроуровне, т. е. на уровне отдельных индивидов. Если трендовое исследование показывает, что десятая часть потребителей, предпочитав­ших отечественные макароны, «переметнулась» к поклонникам спагетти, мы не можем точно определить, кто из респондентов изменил свои предпочтения и, следовательно, каковы общие характеристики «перебежчиков». Таким обра­зом, мы лишены возможности проверить, какие объяснительные переменные позволяют предсказывать динамику предпочтений на микроуровне.