Приключение под водой

Задача N 33. 0Однажды Кусто и его товарищи снимали фильм на большой глубине. Внезапно раздался хлопок, и аквалангист, державший герметичный бокс с осветительной лампой, в мгновение ока очутился на дне. Выяснилось, что из-за большого давления лопнул толстый стеклянный иллюминатор, воздух вырвался наружу, и невесомый до этого бокс (стальной "колокол" с иллюминатором) превратился в пудовую болванку. Попытки оторвать его ото дна оказались тщетными. Как быстро поднять дорогой прибор на поверхность?

 

Наука побеждать: искусство использовать ресурсы

В задаче N 5 о распиловке толстого бруса содержится противоречие: надо выдерживать заданное направление движения ручной пилы, чтобы обрезанный торец был перпендикулярен поверхности бруса, и не надо это делать, чтобы с работой мог справиться …
любой новичок. ИКР задачи: пила САМА себя направляет. Возникает идея: по периметру бруса в месте будущего реза прибить направляющие рейки с зазором для полотна пилы (см.рис.31а). Но за упрощение работы пришлось отступить от ИКР, ввести в систему дополнительные элементы.

А ведь еще средневековый английский философ Уильям Оккам сформулировал знаменитый принцип методологии науки, получивший название "бритва Оккама": entia non sunt multiplicanda praeter necessitatem.5*

Решение тем ближе к ИКР, чем меньше в исходную систему введено дополнительных веществ и полей. В предельном случае необходимо использовать уже имеющиеся в ней ресурсы веществ и полей. Если это не удается, можно привлечь легкодоступные 1ресурсы ближайшего окружения системы, внешней среды, либо бесплатные "отходы" веществ и полей других систем. Таков один из важнейших принципов ТРИЗ.

Итак, попытаемся в нашей задаче обойтись уже имеющимися в исходной системе ресурсами ножовкой и брусом. Как, используя только их, получить направляющий паз по всему периметру будущего реза? Напрашивается простое решение: предварительно пропилить этот паз с самом брусе (см.рис.31 б).

ИКР задачи N 33: тяжелый бокс САМ всплывает на поверхность. Это возможно лишь в том случае, когда он будет легче воды. Рассмотрим имеющиеся в задаче ресурсы: бокс (стальной "колокол"), вода, акваланги, воздух, выдыхаемый аквалангистами. Можно использовать воздух! Надо перевернуть бокс разбитым иллюминатором вниз и заполнить его выдыхаемым воздухом. Именно так и поступили Кусто и его товарищи.

В задаче N 32 не оказалось насоса для срочной откачки разлившейся ртути. ИКР задачи: ртуть САМА удаляется из кабины стратостата. Какие ресурсы исходной системы способны заменить насос?

В распоряжении Пикара были кран для забора проб воздуха из атмосферы и вакуум за бортом. Перепад давления между кабиной и стратосферой лучший насос в такой ситуации. Пикар * Сущностей не следует умножать сверх необходимости (лат.) подсоединил кусок шланга к крану и опустил его в лужу ртути. Поворот крана, и ртуть почти мгновенно вылетела за борт.

В фантастической задаче N 22 потребовалось срочно повысить устойчивость вездехода на больших пневматических колесах. Простейшее решение "опустить" центр тяжести как можно ниже, прикрепив снизу груз (камни, песок и др. ресурсы окружающей среды). Возникает новое противоречие: чем ниже расположен груз, тем выше устойчивость, но тем хуже проходимость, так как груз будет цепляться за выступы поверхности.

Разрешить его можно, используя принцип системного перехода, т.е. объединением свойств колес и груза. Например, спрятать груз внутри колес, используя их ресурс пространства (новый вид ресурсов!). Можно засыпать в колеса песок или мелкие камни. При вращении колес груз, следовательно, и центр тяжести будет всегда находиться у самой поверхности. (см.рис.б). Груз есть, и его как бы нет!

В задаче N 18 содержится противоречие: сигнальная лампа на борту катера должна ярко светить, чтобы возвращающаяся с берега шлюпка могла найти его ночью в море, и лампа вообще не должна светить, чтобы катер был незаметен с берега. Его можно разрешить в пространстве, т.е. используя ресурсы пространства. Пусть лампа светит ярко, но… только в сторону моря. Тогда шлюпка может в темноте наугад пройти дальше в море, о оттуда, ориентируясь по "маяку", вернуться на катер. Подобное решение описано в повести Л.Соболева "Зеленый луч".

В другой фантастической задаче о вездеходе N 24 требовалось устранить истирание колес об алмазные пески. Ничто не может противостоять алмазу, кроме… самого алмаза. В распоряжении космонавтов неисчерпаемый ресурс алмазный песок.

Остается подумать, как из того же песка изготовить защитное покрытие для колес. Например, можно намазать колеса клеем и проехать немного по песку. Как только клей схватится, самое износостойкое покрытие в мире готово.

Кроме уже упоминавшихся вещественных, полевых, пространственных, полезными могут оказаться ресурсы времени (см. задачи на разрешение противоречий во времени) и информации.

В задаче N 31 для подачи сигнала SOS в будущее надо использовать какой-то вещественный ресурс, способный сохранить и сквозь века донести в будущее нужную информацию (ресурс времени). Таковым могут быть произведения искусства, памятники архитектуры, книги, архивные документы и т.д.

Однако существует противоречие: информация, содержащаяся в них, должна быть хорошо понятна людям будущего, и при этом совершенно не привлекать внимание людей начала XX века.

Следовательно, необходимо использовать какой-то информационный ресурс, способный замаскировать содержание сигнала. Так, в фантастическом романе А.Азимова "Конец вечности" хрононавт напечатал рекламу на фоне грозного атомного гриба, в то время еще никому неизвестном, а в архиве будущего сразу бросилось в глаза явное нарушение хронологии. В рассказе В.Журавлевой "Даешь хрононавтику" потерпевший в средневековье аварию написал картину, где на фоне часовой мастерской изобразил поломанный узел машины времени и часы с маятником, изобретенным много позже.

В задаче N 30 содержится противоречие: в подвал надо спускаться два раза, чтобы за два включения надежно определить искомый выключатель, но по условиям задачи разрешен только один спуск. Задача легко решилась бы, если в подвале что-то запоминало результат первого включения и сообщило бы его при спуске в подвал после второго включения.

В нашем распоряжении только лампа. Следовательно, ИКР задачи таков: лампа САМА сохраняет информацию о первой попытке включения. Надо определить, какой ресурс лампы способен сохранить информацию до нашего прихода. Свет? Нет, после выключения он исчезает. Остается тепло!

Тогда наше расследование должно происходить следующим образом: включаем и выключаем первый выключатель, затем включаем второй и спускаемся в подвал. Если лампа не горит и теплая, сработал первый. Если горит второй. А если не горит и холодная остается третий.

 

Алмазные этюды: затяжное приключение

Представьте себе ощущения витязя из известной сказки, который в отчаянной схватке рубил трехглавому дракону одну голову за другой, а на месте каждой отрубленной вырастала новая. В подобной ситуации оказались "эвриканцы", когда принялись решать задачи А1, А2 и А3. Решение каждой из них ставило новые проблемы, о которых сначала не подозревали.

Приключения мысли затянулись сверх ожидаемого. И не сразу ребята осознали, что такая ситуация нормальна, даже обыденна, для творчества. Вот небольшой фрагмент этой "битвы"…

 

* * *

 

Известно, что взрывную волну можно эффективно погасить толстым слоем песка или обычной пены. Но это влечет за собой увеличение размеров установки. ИКР задачи А1: ударная волна

САМА исчезает за пределами камеры. Это возможно, когда сам воздух препятствует ее распространению. В каком случае?

Обычная ударная волна своим возникновением и распространением обязана огромной сжимаемости газообразных продуктов взрыва. А для каких ударных волн воздух не является проводником? Ответ на такой вопрос нетрудно найти в учебнике физики: для ударных волн, возникающих в малосжимаемых средах жидкостях и твердых телах. Последние являются отличными проводниками ударных волн, но из-за малой сжимаемости не способны передать их менее плотной среде.

В этом нетрудно убедиться, крепко взявшись рукой за металлическую трубу, по которой бьют молотком. Удары будут весьма ощутимы, но стоит чуть ослабить хватку, и вы перестанете их чувствовать. Следовательно, заполним камеру жидкостью. Новый вопрос: а как возбуждать в ней ударные волны?

"Фоторобот" искомого явления готов требуется найти способ возбуждения мощных ударных волн в жидкости без взрывчатого вещества. Теперь его нетрудно найти в учебниках физики или в специальном Указателе физических эффектов и явлений0, созданном специалистами по ТРИЗ.*

Известно несколько подобных явлений. Например, гидравлический удар, возникающий в больших трубопроводах при быстром закрывании заслонок. Не подходит, так как установка должна быть малогабаритной.

Советские физики А.М.Прохоров, Г.А.Аскарьян и Г.П.Шипуло открыли светогидравлический эффект. Суть его в том, что при

 

* 0Фрагменты Указателя опубликованы в сб.: Дерзкие формулы творчества. Петрозаводск: Карелия, 1987.

 

пропускании через жидкость мощного лазерного луча в ней возбуждается ударная волна с давлением до миллиона атмосфер! Но где нам взять такой лазер?! Будем искать дальше.

Наиболее подходящим оказался электрогидравлический эффект, открытый Л.А.Юткиным. Суть его в том, что при пропускании через жидкость кратковременного высоковольтного разряда в ней также возбуждаются мощные ударные волны. Чем короче импульс, тем сильнее удар. Важной особенностью эффекта является то, что он наблюдается даже в твердых телах!

Итак, поместим в камеру, заполненную жидкостью два графитовых электрода и пропустим между ними мощный импульс.

На рис.35 показана схема простейшего электрогидравлического генератора ударных волн. Конденсатор С 0заряжается от источника высокого напряжения, пока не произойдет пробой воздушного зазора А 0между электродами, формирующими величину и длительность импульса. После его пробоя сформированный импульс пробивает основной зазор В между графитовыми электродами: в камере на миг возникает сверхвысокое давление, происходит кратковременный сильный разогрев электродов.

При обсуждении всплыли новые проблемы. Например, в будущих экспериментах потребуется проверить широкий диапазон рабочих давлений. Для этого надо регулировать величину и длительность импульса напряжения.

 

Задача А7. При задании параметров ударной волны может возникнуть ситуация, когда ширина воздушного формирующего зазора А, требуемая для его пробоя заданным напряжением, окажется меньше, чем ширина, необходимая для задания определенное длительности импульса. В таких случаях вместо формирующего зазора используют специальные высоковольтные выключате-

ли. Их нет. Необходимо обеспечить пробой большого зазора пониженным напряжением. Как быть?

 

Представим желательный для нас ИКР задачи А2: маленькая камера САМА создает внутри себя огромное давление. Как можно создать давление в замкнутом объеме? Очевидно, что в камере должно находиться некое вещество, создающее это давление. Из физики известно, что увеличение давления в замкнутом объеме происходит при стремлении заполняющего вещества увеличить свой объем. В каких случаях увеличивается объема вещества?

И тут выяснилось, что обычные школьные знания, которые есть у ребят, могут успешно соперничать с могучим прессом, которого у них нет. Все знают, что вода, превращаясь в лед увеличивает свой объем (на 9%). Вспомним стальные трубы с водой, лопающиеся на морозе. Дальше больше: объем веществ увеличивается при тепловом расширении, при разбухании, при плавлении и затвердевании (и других фазовых переходах).

"Эвриканцы" вспомнили об "оловянной чуме", разразившейся на одном из военных складов Петербурга зимой в конце прошлого века: огромные запасы оловянных пуговиц сами собой превратились в горы невзрачного серого порошка. Уже позже ученые выяснили, что при температуре 13,25о0С чистое белое олово превращается в серое олово (объем увеличивается на 26%!).

В справочниках по физике и химии нашлись новые конкуренты прессу серый чугун, кремний, висмут, сурьма, галлий… Чем больше увеличение объема и чем меньше сжимаемость вещества, тем большее давление создается им в замкнутом объеме. Результаты несложных расчетов впечатляли: при замерзании воды в камере должно развиваться давление в 6 800 атмосфер (впоследствии выяснилось, что эта расчетная величина оказалась сильно завышенной), при фазовом переходе белое олово серое олово до 120 000 атмосфер, а при кристаллизации кремния давление может достигать фантастической величины в 620 000 атмосфер!

Таким образом, при охлаждении герметичной камеры, заполненной одним из этих веществ мы сможем получить высокое статическое давление без всякого пресса!

Неожиданно были получены интереснейшие "побочные" результаты. Кристаллизуясь при температуре 14155о0С, кремний является "бесплатным" источником тепла и давления, автоматически создает идеальные условия для синтеза алмазов известным каталитическим способом. Используя его можно создать простейшую установку. Но самое важное сходство его структуры со структурой алмаза. Отпадает необходимость в катализаторах и затравочных кристаллах: кремний сам выполнит роль "программы", заставляющей атомы углерода складываться в алмазную структуру! До сих пор из-за необычайно сложной технологии, искусственные ювелирные алмазы во много раз превышают стоимость природных. Кремний открывает широчайшие перспективы для создания простых термобаростатов для их синтеза!

Но вернемся к нашей "Искусственной алмазной трубе".

Посетовав на отсутствие у нас особо чистого олова, решили начать с воды. Установка приобретала все более фантастические черты. Вода при замерзании создаст высокое статическое давление, затем между графитовыми электродами проскочит ослепительная молния, на мгновение возникнет мощная ударная волна и произойдет нагрев электродов. Лед и пламень на миг соединятся в единое целое! Все это завершится быстрым охлаждением графита и падением давления в камере, вызванным частичным или полным таянием воды что нам и требовалось!

Самое время заняться высокопрочной камерой, способной выдержать огромное давление. В задаче А3 содержится противоречие: стенки камеры должны быть толстыми, и они же должны быть тонкими. Очевидно, что ни в пространстве, ни во времени эти противоречивые требования разделить нельзя. Остается проверить системные переходы. В соответствии с одним из них, толстую стенку нужно составить из множества тонких.

Конкретно это можно сделать, намотав поверх небольшой камеры множество слоев тонкой стальной проволоки или ленты. Так наша исходная цилиндрическая камера превратилась в некое подобие катушки с нитками, точнее с проволокой. Кстати, подобным образом в свое время Н.В.Гулиа решил проблему увеличения прочности маховика (задача N 3).

Дальнейшие расчеты подтвердили, что проволочная камера способна выдержать в три с лишним раза большее давление, чем изготовленная из монолитной стали.

При обсуждении подробностей конструкции камеры всплыл новый ворох проблем. Например, мы совершенно упустили из вида проблему герметизации внутреннего объема камеры.

 

Задача А8. При высоких давлениях лед способен "протекать" сквозь небольшой зазор между крышкой и стенками камеры. Потеря даже небольшого количества льда (рабочего вещества) недопустима, так как ведет к снижению давления в камере. Приклеивать или запаивать крышку наглухо нельзя: камера должна быть разбираемой. Необходимо устранить зазор. Как быть?

 

Вернемся к "электрической" задаче А7. В ней содержится противоречие: воздушный зазор А 0(см.рис.35) должен быть большим, чтобы сформировать короткий импульс, и он должен быть небольшим, чтобы пробиваться при пониженном напряжении. ИКР задачи: большой воздушный зазор САМ становится проводящим, не изменяя при этом своей величины.

В нашем распоряжении имеются ресурсы воздух, сильное электрическое поле в зазоре, создаваемое приложенным к нему напряжением, металлические электроды, высоковольтный источник. Как, используя их, сделать непроводящий воздух в зазоре проводником? Ответ очевиден: насытить зарядами ионами и электронами, т.е. ионизировать воздух. Простейший способ ионизации электрический разряд. Если рядом с большим зазором проскочит хотя бы маленькая искра, то сильное поле втянет образовавшиеся при этом ионы и электроны в зазор. Ускоренные этим полем заряды вызовут лавинную ионизацию воздуха в основном зазоре, произойдет основной разряд.

Практически это можно реализовать, устроив около одного из электродов дополнительный маленький зазор, пробиваемый даже небольшим напряжением (см. рис.37).

Противоречие задачи А8: зазор между крышкой и стенками камеры должен быть, и его не должно быть. ИКР: крышка САМА устраняет зазор, после установки на место. То есть крышка должна как-то увеличить свой диаметр. В нашем распоряжении есть мощный ресурс давление льда. Как, используя его, увеличить диаметр крышки? В простейшем случае по периметру дна крышки можно выполнить тонкостенный легкодеформируемый поясок (см. рис.38). Возрастающим давлением льда такой поясок плотно прижмется к стенкам и надежно загерметизирует камеру. Противоречие разрешено во времени.

И тут (как обычно!) выявилась новая проблема. Проверьте свои силы на ней и некоторых других.

 

Задача А9. В первые мгновения, когда лед только начинает образовываться, давление недостаточно для деформации пояска крышки. Еще не замерзшая вода будет выдавливаться в зазор, что также недопустимо. Необходимо предотвратить возможные потери воды до полной деформации пояска. Как быть?

Задача А6. 0Электрический контакт в месте соединений "графитовый электрод токоввод" и "токоввод шина" обеспечивается путем механической стыковки этих деталей (см.рис.А). Это обусловлено необходимостью сборки-разборки установки. Однако при этом неизбежны электрические потери в этих местах. В конечном итоге это приводит к ухудшению ударной силы электрического разряда. Пайка соединений недопустима. Как обеспечить надежных электрический контакт?

Задача А11. При закрывании заполненной водой камеры под крышкой неизбежно остается большой воздушный пузырь. Лед, стремясь расшириться, заполнит эту пустоту, вместо того, чтобы создавать давление в камере. Необходимо из закрытой камеры удалять скопившийся воздух. Как быть?

Задача А15. Во время каждого эксперимента необходимо точно знать величину давления в камере. Однако введение в камеру дополнительных датчиков уменьшит полезный объем воды, приведет к усложнению камеры. Как быть?

 

* * *

 

Так, от задачи к задаче, все глубже прорабатывался проект установки и постепенно формировался ее будущий облик. На рис.39 показан эскиз окончательного варианта "Искусственной алмазной трубы".

ГЛАВА 6 СТРАНИЦЫ БИОГРАФИИ: ПАМЯТЬ ЗЕМЛИ

Bentosuchus sushkini

Летом 1925 года по заданию П.П.Сушкина Ефремов отправился в Ленкорань, в зоологическую экспедицию. В рекомендательном письме к директору местной биостанции он характеризовался как "настоящий тип начинающего ученого."

По окончании работ остался на Каспии в качестве командира катера на лоцманской дистанции это было его прощание с мечтами о море. Осенью пришла телеграмма от Сушкина в Геологическом музее освободилось место препаратора, и ликующий Ефремов помчался в Ленинград.

 

Из предвидений И.А.Ефремова: карточка Е-8 Повесть "Звездные корабли", 1947 год.. Высказана идея о возможности создания объемных изображений. Даны описание¦ ¦объемного изображения и условия, при которых его можно наблюдать.

Подтверждение.. В том же году Д.Габор сформулировал основные принципы голографии. В 1962 году советский физик Ю.Н.Денисюк и сотрудники Мичиганского университета Э.Лейт и Ю.Упатниекс получили первые голографические изображения.

 

Он учился в университете и все свободное время проводил в лаборатории, под руководством Сушкина постигал основы палеонтологии, приобретал необходимые навыки. Особый интерес в долгих беседах с Учителем вызывал палеоэкологический метод исследования ископаемых животных.

Академик Сушкин, как и его предшественник В.О.Ковалевский, придерживался взглядов о ведущей роли воздействия окружающей среды на формирование особенностей строения животных. Это позволяло по изучению ископаемых остатков воссоздавать условия их обитания, природные ландшафты глубочайшей древности, "оживлять" картины прошлого. И, наоборот, по условиям захоронений остатков получать более полное представление и самих ископаемых животных.

Это требовало напряженной работы воображения. Могло ли быть что-либо более привлекательное для юноши, с раннего детства полюбившего полет фантазии?!

Помимо научной подготовки, Петр Петрович много времени уделял воспитанию юноши, с 12 лет росшего без родителей и имевшего по этой части значительные пробелы. Тот нередко грубил старшим коллегам, оставлял в беспорядке рабочий стол, невежливо разговаривал по телефону, например, любил отвечать на телефонные звонки строгим голосом: "Академик Сушкин слушает!" Однажды он ответил так самому Петру Петровичу…

В вопросах воспитания Сушкин был беспощаден. По субботам он вызывал Ефремова в свой кабинет, доставал список недельных "грехов" и так "снимал стружку", что тот, к немалому удовольствию сотрудников музея, как ошпаренный вылетал за дверь. Как не трудно было ему в тот период, но беспредельная преданность палеонтологии и строгая доброта Учителя постепенно делали свое дело.

В 1926 году Ефремов отправился в первую самостоятельную палеонтологическую экспедицию на гору Богдо. Он успешно справился с заданием Сушкина, получил интересные и необычные результаты, по материалам которых написал свою первую научную статью. Эти же наблюдения легли в основу долгой дороги 124 раздумий, через 14 лет приведшей к созданию нового научного направления в палеонтологии.

Научная работа и экспедиции отнимали чрезвычайно много времени, и на третьем курсе он оставил учебу в университете. В следующие два года Ефремов провел еще две успешных экспедиции. За ним потянулась слава удачливого "охотника за динозаврами."

 

Из предвидений И.А.Ефремова: карточка Е-14 Повесть "Сердце Змеи", 1959 год..

Высказана идея насекомообразного хирургического микроробота-"сколопендры", способного самостоятельно проводить операции во внутренних полостях организма.

Подтверждение.. Уже в наше время эта идея становится реальностью. В лаборатории искусственного интеллекта Массачусетского технологического института созданы первые "интеллектуальные" насекомообразные микророботы-клопы объемом всего 21 см530. Планируется изготовление еще более миниатюрных роботов для проведения глазных и нейрохирургических операций, для выполнения особо точных сборочных работ.

 

В 1928 году в его жизнь вошло большое горе умер старший друг и Учитель, академик П.П.Сушкин. Петр Петрович оказал огромное влияние на формирование И.А.Ефремова, как исследователя и человека, щедро делился с ним своими замыслами и идеями. Например, предсказание существования первобытных людей в Центральной Сибири и их связи с древнейшими обитателями Центральной и Восточной Африки (рассказ "Голец Подлунный") не обошлось без влияния Сушкина, который был убежденным сторонником гипотезы о северной прародине человека.

Отныне Ефремову предстояло продолжать и развивать дело своего Учителя. Любовь и благодарность к этому удивительному человеку он сохранил на всю жизнь. В честь П.П.Сушкина он назвал первого открытого им лабиринтодонта Bentosuchus sushkini.

Говорят, что история повторяется в лучших своих проявлениях. История встречи и взаимоотношений П.П.Сушкина и И.А.Ефремова сто с лишним лет спустя повторила историю сэра Гэмфри Дэви и молодого работника переплетной мастерской Майкла Фарадея, в будущем великого физика. Тот, как и Ефремов, загорелся желанием посвятить свою жизнь науке. Сперва он написал президенту Лондонского Королевского общества Джозефу Бэнксу, но тот даже не соизволил ответить.

Несколько месяцев спустя Фарадей отважился написать известному физику и химику сэру Дэви, курс лекций которого прослушал не за долго до этого. Дэви благожелательно отнесся к стремлениям молодого человека. Они встретились, и ученый по достоинству оценил Фарадея. Но, к сожалению, из-за отсутствия вакансий не смог принять его на работу. Через несколько недель в лаборатории Дэви эта вакансия появилась, и Фарадей стал помощником и учеником известного ученого…

Жизнь в пути

"…Превосходно сохранившиеся кости гигантских ящеров покрывали большую часть долины. Палеонтологи с радостными восклицаниями бросались то в одну, то в другую сторону…

… Кости торчали повсюду в промоинах, переполняли обнаженную на бугорках породу, громоздились целыми скоплениями.

…Странное впечатление производила эта раскаленная черная, безжизненная долина, заваленная исполинскими костями. Невольно на ум приходили древние легенды о битвах драконов, о могилах великанов, о скопищах погубленных потопом гигантов. И сразу становилось понятным возникновение этих легенд, несомненно имевших своей основой подобные открытые скопления огромных костей." (Ефремов И.А. "Тень минувшего")

Эта картина не плод воображения писателя. Во время палеонтологической экспедиции 1929 года, в предгорьях Тянь-Шаня И.А.Ефремов встретился с удивительной и незабываемой картиной гигантского кладбища миллионов динозавров протяженностью в десятки километров! Возможно, именно тогда он впервые задумался о причинах возникновения скопищ останков ископаемых животных, впоследствии оформившихся в четко поставленную творческую Цель. А пока его главной творческой Целью был поиск и изучение ископаемых животных.

В эти годы он руководил рядом успешных палеонтологических экспедиций, приносивших все новые и новые открытия.

Каждая экспедиция встреча с неизвестным, незабываемое приключение. Трудностей хватало с избытком. Так, найденные кости и целые скелеты, окаменевшие за миллионы лет и хрупкие как стекло, невозможно за короткое время полностью извлечь из породы. Приходится вырубать их вместе с монолитом породы, укладывать в огромные ящики и для сохранности заливать гипсом. Затем, в условиях бездорожья необходимо доставить их до ближайшей дороги, организовать доставку на место…

И только потом можно приступить к кропотливой и чрезвычайно длительной работе по их извлечению, подобно скульптору, отсекая от них все лишнее.

Основные маршруты его экспедиций пролегали по Уралу и Средней Азии. Во время экспедиций Ефремов не ограничивался выполнением основной задачи. Его пытливый ум живо интересовали происходящие вокруг события, особенности быта и наречия местных жителей, местные легенды и сказания и т.п. Свои наблюдения, догадки, гипотезы он заносил в "премудрые тетради", с которыми никогда не расставался. Казалось бы, зачем?

В этом сказывалось его стремление познавать мир во всем его многообразии. Так, наряду со стремлением изучать историю жизни Земли, постепенно формировалось стремление повышать полноту исторической летописи человечества, которое по характеру было тесно связано с первым и проистекало из его серьезного интереса к истории. Позднее эти наблюдения сыграли важную роль в его литературной и научной деятельности.

Из предвидений И.А.Ефремова: карточка Е-9 "Тафономия и геологическая летопись", 1950..

Высказана и¦ ¦научно обоснована мысль: "…Внезапные погружения материков¦ ¦под уровень моря, как, например, легендарной Атлантиды, в¦ ¦действительности никогда не имели места." И.А.Ефремов считал Атлантидой остров Крит, где существовала высокоразвитая минойская цивилизация, погибшая тысячи лет назад вследствие сильнейшего извержения вулкана на острове Санторин.

Подтверждение.. В наше время многие исследователи склоняются к этой гипотезе. Например, очень убедительные доводы в ее пользу получены подводной археологической экспедицией известного исследователя моря Ж.-И.Кусто.

 

* * *

 

"…Едва мы въехали на бугор, олени заскользили. Спрыгнувшие с нарт люди сами скользили и падали и были не в силах удержать упряжки. Я сообразил, что все мы неудержимо сползаем к краю ледяного обрыва, с которого спадает на трехсотметровую глубину замерзший водопад… Раздался высокий, звенящий голос проводника: Держись, смерть близко ходи!

В страхе за судьбу товарищей я метнулся вперед, уцепился за задок наиболее далеко сползших нарт, поскользнулся снова и упал. Девяносто килограммов моего живого веса, обрушились на молодой лед, пробили в нем большую дыру, и таким образом я получил наконец твердую опору. Невзирая на воду, пропитавшую ватные брюки, я держал проклятые нарты, пока спутники не справились с оленями и не завернули их круто назад от пропасти." (Ефремов И.А. "Голец Подлунный")

Движимый романтикой первопроходцев, в 1931-1935 годах И.А.Ефремов принял участие в ряде чисто геологических экспедиций по Уралу, Сибири и Дальнему Востоку. В поисках угля, золота, нефти, рудных месторождений он прошел по неизведанным местам Сихоте-Алиня, Амуро-Амгуньского междуречья, центральной Якутии… Кстати, эпизод из рассказа "Голец Подлунный", приведенный выше, описывает реальные события во время чрезвычайно опасного путешествия в труднодоступную Верхне-Чарскую котловину. Довелось ему также руководить изысканиями железнодорожной трассы Лена-Бодайбо-Тында.

Участниками подобных экспедиций могли быть люди исключительного мужества и выносливости. Без радио, без вертолетной поддержки геологи уходили в неизвестность на долгие месяцы, оставаясь один на один с суровой сибирской природой. Здесь можно было лишь рассчитывать на свои силы и помощь друга. Им приходилось в жару и в холод, в облаках гнуса преодолевать скопления гольцов и каменные цирки, пробираться по труднопроходимым ущельям и распадкам, сплавляться через коварные пороги… Спустя много лет, И.А.Ефремов самоотверженно работал в тяжелейших условиях черной пустыни Гоби. И это не смотря на инфаркт миокарда, перенесенный буквально на ногах!

Каждая экспедиция давалась сверхнапряжением сил, и это впоследствии сильно сказалось его на могучем здоровье.

Поздней осенью, после очередной экспедиции он возвращался к своим "академическим" занятиям: за время палеонтологических экспедиций накопилось огромное количество материала, требовавшего изучения и описания.

Со временем все острее осознавалась необходимость получения высшего образования, которое он в свое время оборвал, увлекшись научной работой: нередко он "спотыкался" при отстаивании своих взглядов и проектов новых исследований.

Будучи уже опытным, квалифицированным геологом, не прерывая напряженную научную и экспедиционную деятельность, в 1932 году он поступил в Ленинградский горный институт, и окончил его за 2,5 года.

Интересно, что еще до получения диплома, во время экспедиций ему приходилось читать студентам-практикантам по различным разделам геологии. Этого было абсолютно достаточно, чтобы по возвращении в институт те могли получить соответствующий зачет!

В 1935 году за совокупность работ по палеонтологии И.А.Ефремову присвоили ученую степень кандидата биологических наук. К этому времени он сформировался как зрелый ученый, был руководителем многочисленных экспедиций, автором 15 научных трудов по палеонтологии и геологии.

В том же году Палеонтологический институт переехал в Москву. И тут выяснилось, что для великолепных экспонатов Геологического музея, в том числе для уникальной коллекции Северо-Двинской галереи ископаемых динозавров, не были предусмотрены помещения. Иван Антонович написал Сталину письмо, в котором доказывал необходимость срочного размещения уникальных коллекций музея. Поступок, могущий иметь для автора письма трагические последствия!

По счастью этого не произошло, и в 1936 году в конюшнях бывшего Нескучного сада возник Палеонтологический музей.

В марте 1941 года И.А.Ефремову присвоили степень доктора биологических наук.

 

Палеонтология как точная наука

Тогда как американский палеонтолог Эндрюс, работавший в Монголии несколько лет, утверждал, что миллионы лет назад здесь простиралась пустыня с жалкими оазисами жизни, Иван Антонович, ни разу до этого там не бывавший, пришел к заключению, что на месте современной пустыни Гоби в то время была обширная низменная, заболоченная равнина с богатейшим животным и растительным миром. Кто же из них был прав, и на чем основывалась уверенность Ефремова?

В предвоенный период он возглавил серию палеонтологических экспедиций в Татарии, Поволжье, Башкирии и Приуралье. Все они были не просто обычной работой палеонтолога, а служили важными звеньями в цепи долгих поисков и размышлений, приведшей в конце концов к разработке основ нового научного

направления в палеонтологии.

Палеонтолог работает лишь с малой толикой ископаемых останков древних животных, чудом уцелевших в течение сотен миллионов лет и найденных ценой невероятного везения. Почти все богатство и разнообразие древней жизни безвозвратно кануло в темной пучине времени.

По тому что уцелело, во времена Ефремова можно было составить лишь очень сухие, отрывочные описания бесконечно богатой картины древней жизни. Иначе и нельзя: воображение воображением, а наука должна опираться на строгие факты!

Таким образом могучий и многообразный поток древней жизни постоянно ускользал от палеонтолога, оставляя в руках лишь редкие песчинки новых знаний. Этот запрет на познание прошлого, наложенный самой природой, стал предметом постоянных раздумий И.А.Ефремова.

"Над отливающей синью плитой ископаемой смолы встал откуда-то из ее черной глубины гигантский зеленовато-серый призрак. Громадный динозавр замер неподвижно в воздухе, над верхним краем обрыва, вздыбившись на десять метров над головами остолбеневших людей…

Сквозь призрак просвечивали черные утесы гор, и в то же время можно было отчетливо различить малейшую подробность тела животного. Испещренная мелкими костными бляшками спина чудовища, его шероховатая кожа, местами обвисшая тяжелыми складками, странный вырост на горле, выпуклости исполинских мышц, даже широкие фиолетовые полосы вдоль боков все это придавало видению изумительную реальность. И неудивительно, что пятнадцать человек стояли онемевшие и зачарованные, пожирая глазами гигантскую тень, реальную и призрачную в одно и то же время." (Ефремов И.А. "Тень минувшего")

Как вырвать у природы и времени их вековечные тайны, расширить круг данных, используемых в работе и, тем самым, обогатить знания о древнейшей жизни на Земле? В рассказе "Тень минувшего", в котором высказана идея возможности существования природных "фотографий" далекого прошлого, как в зеркале, отразились его раздумья над этой проблемой.

На долгие годы главным вектором научных поисков ученого стал поиск путей обогащения, повышения полноты историко-геологической летописи Земли.

Еще во время первой самостоятельной экспедиции на гору Богдо Ефремов обратил внимание на странный факт: скопление остатков древнейших земноводных было обнаружено на дне бывшей морской бухты. Явное несоответствие между между условиями обитания пресноводных существ и условиями их обитания!

Тогда это привело его к мысли, что скелеты были принесены сюда древней рекой из глубин континента. Последующие экспедиции подтверждали эту догадку.

Он стал уделять внимание противоречиям между биологическими и геологическими фактами. А их накапливалось все больше и больше. Нередко кости вымерших животных одной эпохи находили в геологических пластах более поздних эпох. Иногда в одном осадочном слое находили кости, принадлежавшие животным различным геологическим эпохам. В одних захоронениях находили отлично сохранившиеся скелеты, а в других только отдельные сильно поврежденные кости.

Уже в то время он обратил внимание на то, что палеонтологи часто упускали из вида такие биологические вопросы, как изменение численности животных, их гибель, рассеяние и разрушение остатков и многие другие.

С другой стороны он пришел к пониманию важности изучения процесса отложения костей в осадочных породах. Ответить на это могла только геология. Так, еще одно из увлечений детства геология было поставлено на службу своей науке.

Вопрос почему кости располагаются так, а не иначе? стал отправной точкой его исканий в новой творческой Цели.

Он пришел к выводу, что решение проблемы возможно только на стыке палеонтологии, биологии и геологии, путем преодоления противоречий, возникающих между ними. Действительно, по особенностям строения скелетов можно установить условия обитания и образ жизни вымерших животных. А изучение геологических особенностей осадочных пород позволяло проследить, откуда поступают остатки этих животных.

 

Из предвидений И.А.Ефремова: карточка Е-6 Рассказ "Алмазная труба",. 1945 год..

Высказано и обосновано предположение о существовании в Сибири месторождений алмазов. Описаны возможные геологические условия залегания алмазов. Дан метод их поиска по наличию в породе красных пиропов. Подтверждение.. В августе 1954 года в Сибири было открыто первое месторождение алмазов алмазная труба "Зарница". Метод поиска, предложенный Ефремовым, стал основным при поиске новых месторождений.

 

Тогда-то и пригодился опыт геологических экспедиций по Сибири и Дальнему Востоку. Там он смог изучить осадочные породы, так сказать, в чистом виде. Благодаря этим путешествиям он осознал, что геологи в основном интересовались процессами образования пород, при этом часто упуская из вида противоположные процессы разрушения горных пород и перехода их в осадочные. Исследуя их, он выявил закономерности разрушения горных пород и осадконакопления (литолеймономия).

Далее он установил тесную связь этих процессов с процессами образования захоронений остатков вымерших животных.

Удалось выяснить причины образования и разрушения захоронений. Например, зоны наибольшего накопления ископаемых остатков совпадают с зонами интенсивного осадконакопления дельтами больших рек и прибрежными участками материков.

Так были сформулированы основные закономерности захоронения вымерших животных, положившие основу новому научному направлению тафономии (от греческих слов тафо захороняю, номос закон).

Позже, в "Дороге ветров" И.А.Ефремов писал: "Мы изучили закономерности тех процессов, которые формируют в истории Земли страницы геологической летописи, те пласты, слои горных пород, в которых захороняются, превращаются в камень, сами становясь частью породы, остатки древних вымерших животных. Узнали, что большие скопления окаменелых костей образуются не случайно, а в результате совпадения совершенно определенных процессов, которые можно учесть. Узнали, что распределение этих местонахождений в пластах земной коры также подчинено определенным законам, изучением которых занимается новая отрасль геологических наук тафономия."

В тафономии отразилось стремление И.А.Ефремова не ограничиваться открытием и описанием новых фактов в палеонтологии (что само по себе считается ценным вкладом в науку), а проникать в самую суть явлений, искать скрытые в них закономерности. Благодаря ему, палеонтология из "кладоискательской" науки превратилась в точную.

 

Черная Гоби

 

"Огромные черепахи толкались неспешными стадами в сумерках вдоль берегов. Одни высоко вытягивали длинные шеи и, приподнимаясь на передних ногах, доставали съедобные верхушки кустарников. Другие, тяжело ворочаясь, спускались к воде, не страшась внимательных, отливающих красным огнем, глаз больших аллигаторов, неподвижно лежавших в мелкой воде у края отмели. Фантазия все обострялась: я чувствовал влажное дыхание реки, слышал шелест и топот бесчисленных зверей, их фырканье и рев, хриплый вой неведомых хищников."

Так, звездными ночами, в знойной пустыне Гоби Ефремов давал волю своему воображению и представлял себе древний мир этого гиблого места.

Первые статьи с наметками основных черт тафономии он написал в 1935-1936 гг. В 1940 году была опубликована статья "Тафономия новая отрасль палеонтологии", излагавшая ее основы. Рукопись его главного научного труда "Тафономия" была закончена в 1943 году, но опубликовать ее удалось лишь в 1950 году. Основные положения тафономии казались палеонтологам слишком еретичными, подрывающими "основы" их науки. И это не смотря на логичные доказательства, подкрепленные множеством достоверных фактов!

Для доказательства своей правоты Ефремову требовалось подтвердить свои выводы на практике.

Обработав с использованием открытых им закономерностей данные своих среднеазиатских экспедиций и данные американской экспедиции в Монголию в 1922-1925 гг., он пришел к выводу, что в Монголии возможно открытие новых захоронений динозавров.

Экспедиция в пустыню Гоби (1946, 1948, 1949 гг.) блестяще подтвердила его прогнозы. Были открыты богатейшие местонахождения ископаемых останков, неизвестные ранее науке виды динозавров. Находка древних копытных нотоунгулат изменила представления ученых о развитии млекопитающих: до тех пор останки этих животных находили только в Южной Америке, и считалось, что эволюционное развитие там шло особым путем. Дальнейшие экспедиции подтвердили и другой вывод ученого о том, что Монголия является уникальной сокровищницей ископаемых животных.

 

* * *

 

В ходе Монгольской экспедиции Ефремов, как обычно, с живым интересом наблюдает за окружающим. Его "премудрые тетради" постоянно пополняются интересными наблюдениями, заметками о неразгаданных тайнах и смелыми, необычными гипотезами.

Так, на юге Монголии экспедиция обнаружила множество окаменевших стволов ископаемых деревьев кордаитов. В палеозойскую эру кордаитовые леса простирались вдоль климатических поясов на огромные территории, образовав в будущем мощные каменноугольные пласты. Точно такие же геологические пласты были давно известны в Сибири и Индии.

Следовательно, в конце палеозойской эры, к которой относилась находка, широкая полоса кордаитовых лесов проходила с севера на юг в районе умеренного климатического пояса. Противоречие! Известно, что климатические пояса располагаются параллельно экватору, а не перпендикулярно. И Ефремов сделал смелое предположение, что около 300 млн. лет назад ось вращения Земли лежала в плоскости солнечной орбиты! По этому поводу он писал: "Астрономы, пока упорно верящие в незыблемость планетных осей, будут находить всяческие возражения и авторитетно "опровергать" нас, геологов…"

Какие силы могли наклонить ось в современное положение? К каким ужасным для обитателей Земли последствиям могла привести подобная катастрофа? Тайна до сих пор остается неразгаданной и ждет своих исследователей.

 

* * *

 

После публикации книги "Тафономия и геологическая летопись" известный исследователь Сибири и Центральной Азии академик В.А.Обручев восхищенно писал И.А.Ефремову: "Я не представлял, что о захоронении остатков животных можно собрать столько материалов, чтобы написать целую книгу."

 

Из предвидений И.А.Ефремова0: карточка Е-13 Роман "Туманность Андромеды", 1957 год..

Высказана идея¦ ¦геологической бомбы, сбрасываемой со звездолета на исследуемую планету для получения направленного выброса грунта в верхние слои атмосферы, т.е. обеспечивающей дистанционный сбор проб грунта. Подтверждение.. Идея дистанционного взятия проб грунта без посадки на поверхность была реализована в конструкции автоматических межпланетных зондов "Фобос-1" и "Фобос-2". Только ¦в данном случае вместо бомб предполагалось использовать мощный лазерный луч.

 

В 1952 году за разработку основ тафономии И.А.Ефремов был удостоен Государственной премии. Не смотря на это, он неоднократно подчеркивал, что тафономия слишком обогнала время и мировое признание получит лет через двадцать. К такому выводу он пришел после тщательной оценки общих тенденций развития науки. Удивительный дар предвидения не подвел его и на этот раз: общее признание тафономия получила лишь в начале 70-х годов!

 

Будущее науки

Монгольская экспедиция внесла важный вклад в развитие палеонтологии, и, вместе с тем, стала "лебединой песней" И.А.Ефремова: резко ухудшившееся состояние здоровья поставило непреодолимую преграду для экспедиционной работы. Прирожденный путешественник, в одном из писем он с нескрываемой грустью писал: "…Мои путешествия кончились вероятно навсегда."

В пятидесятые годы он активно занимался научной работой и подготовкой ряда важных палеонтологических экспедиций. Обрабатывал материалы Монгольской экспедиции, публиковал научные статьи по этой теме. Опубликовал ряд работ по своей излюбленной тематике ископаемым пермского периода. Написал руководство по поиску ископаемых позвоночных и многое другое.

В 1957 году И.А.Ефремова избирают почетными членом Линнеевского общества в Лондоне. Казалось бы, ученый полностью состоялся… Но самоуспокоение и самолюбование чуждо ему.

Мысль ученого стремиться дальше в направлении главного вектора творческого поиска как еще повысить полноту историко-геологической летописи Земли?

Он начинает обдумывать контуры нового направления морской тафономии, о которой бегло упомянул в первой книге "Тафономии…". Но и тафономия уже не удовлетворяет.

В своей работе палеонтологи руководствуются лишь малой частью информации о взаимодействии организма с окружающей средой: все остальное кануло в небытие. Необходимо расширить арсенал методов исследований. За счет каких ресурсов?

По его мнению, огромные резервы развития палеонтологии помогут раскрыть новейшие физико-химические методы. Еще больший эффект могут дать биологические исследования современных животных, особенно малоизученных реликтовых, появившихся еще в глубокой древности и наиболее близких к ископаемым животным. Детальное познание их образа жизни, особенностей строения, отражающих приспособление к среде обитания, должны оказать неоценимую помощь в "реконструкции" вымерших форм жизни.

В качестве первоочередной задачи, по мнению ученого, необходимо остановить процесс катастрофического вымирания животных и сохранить окружающую среду гигантскую "лабораторию" эволюции жизни для потомков. Иначе человечество рискует потерять нити эволюции, так и не успев изучить их.

Можно только удивляться прозорливости ученого, поставившего такую задачу в конце 50-х годов, когда еще не были осознаны глобальные экологические проблемы!

Другая неотложная задача изучение и обобщение тысячелетнего опыта охотничьих племен Африки, Южное Америки, Индии и других стран. Именно они лучше, чем кто-либо, знают повадки и образ жизни многих животных. И этот бесценный опыт, отмечал Ефремов, также стремительно утрачивается.

В 1961 году он написал статью "Некоторые соображения о биологических основах палеозоологии", в которой развил ранее высказанные идеи и изложил суть диалектического метода, основанного на анализе противоречий развития, которым он много лет успешно пользовался в научной работе.

 

Братья по разуму

Последняя научная статья "Космос и палеонтология", опубликованная через месяц после смерти Ивана Антоновича, была посвящена обоснованию единства путей эволюции во Вселенной. В ней развивалась гипотеза, ранее высказанная им в повестях "Звездные корабли" и "Сердце Змеи".

Процесс биологической эволюции процесс усложнения форм жизни, связанный с приспособлением к условиям обитания, с совершенствованием энергетики организмов и увеличения независимости от изменчивости внешней среды (т.е. увеличения универсальности организмов). Рассмотрев этот процесс, он пришел к выводу, что возникновение разума не случайность, а закономерный результат эволюции. То есть эволюция изначально была направлена на "создание" разумного существа.

Он указал на важные особенности организма, необходимые для работы разумного мозг: постоянство внутренней среды организма и высокий уровень двигательной активности. Для этого организм должен иметь высокий запас энергии, сложнейшую нервно-гормональную систему, для управления которой требуется высокоразвитый мозг. Для более точной и быстрой ориентировки органы чувств должны быть сосредоточены у мозга.

Дальнейшее увеличение универсальности требует попыток создания искусственной среды обитания, что невозможно без способности изготовлять хотя бы примитивные орудия труда…

Как отмечал ученый, в процессе эволюции было несколько попыток "создания" разумного существа. Первая из них произошла в глубочайшей древности, когда возникли моллюски. Головоногие моллюски кальмары и осьминоги прямые родственники устриц. Но они обладают высокоразвитым мозгом, стереоскопическим бинокулярным зрением, сосредоточенном в непосредственной близости мозга и присущим высшим животным, гибкими развитыми конечностями!

Но только строение человека отвечает всем требованиям.

И.А.Ефремов отметил главную особенность эволюции: чем выше ступень эволюционного развития, "тем меньше "разброс" жизненных форм, тем больше их сходство."

Он сделал несколько важнейших выводов:

высшие разумные существа должны быть близки по строению: "никакой скороспелой разумной жизни в низших формах вроде плесени, тем более мыслящего океана быть не может.";

мышление является отражением внешнего мира, а, поскольку, законы природы едины во всей Вселенной, то и высшее мышление, возникшее в любой ее точке едино;

законы биологической эволюции "позволят нам понять и даже предсказать ход развития жизни в иных мирах, на что палеонтология как наука, обладающая фактической исторической документацией, имеет право прежде всех других наук."

Еще в 1959 году в одном из интервью Иван Антонович говорил: "Я жду подтверждения самой важной для меня, как палеонтолога, гипотезы о единстве органических форм жизни во Вселенной, которую я всегда защищал, защищаю и буду защищать."

Время покажет подтвердится ли и это его Предвидение.

 

ГЛАВА 7 НА ВОЛНАХ ТВОРЧЕСТВА

Цели-фантомы

Творческая Цель неизбежно становится одним из ведущих смыслов жизни творческой личности. А что если она на поверку окажется пустышкой, целью-фантомом?! Сколько людей спалило свой талант в бесплодных поисках философского камня, попытках изобрести вечный двигатель и прочее? Время и силы, растраченные в погоне за недостижимым призраком, не вернешь…

Иногда цели-фантомы скрываются под внешне благополучной маской. Вспомним попытку синтеза алмазов Дж.Хэннеем. История науки и техники хранит множество подобных примеров.

Почему иной раз творческая Цель может завести в тупик, оставаясь по-прежнему недостижимой? Можно ли избежать подобных ошибок? Как отличить верную цель от миража?

Чтобы найти хотя бы приблизительные ответы на эти трудные вопросы, попытаемся сперва на конкретных примерах разобраться, случайно или нет возникают различные открытия и изобретения главные "поставщики" новых творческих Целей.

Рассмотрим историю одной такой проблемы.

 

История открытия атома

5 сентября 1906 года покончил с жизнью выдающийся немецкий физик Людвиг Больцман, создатель знаменитой молекулярно-кинетической теории газов, внесший существенный вклад в открытие атомов. Причиной тому была глубокая личная трагедия, вызванная полным отрицанием его атомистических взглядов

большинством ученых того времени, среди которых были такие известные личности, как Э.Мах и В.Оствальд.

Незадолго до этого он писал: "Я вполне отдаю себе отчет в бессилии одного человека перед лицом мнения, разделяемого большинством." Он не дожил до полной победы учения об атомах всего три года!

 

* * *

 

Еще в древнегреческий философ Демокрит считал, что мир построен из неделимых частиц атомов, состоящих из одного вещества (говоря современным языком из протонов, нейтронов и электронов) и различающихся по форме и величине! В противовес ему Платон и Аристотель считали, что все состоит из четырех стихий огня, воздуха, воды и земли.

Путь к открытию атомов пролегал через химию, радиоактивность, термодинамику, оптику и электромагнитные явления.

В конце XVIII века великий французский химик А.Лавуазье смело отверг распространенное тогда учение о четырех стихиях и ввел понятие химического элемента. В 1803 году атомистическую теорию строения вещества выдвинул английский ученый Дж.Дальтон. В 1814-1818 гг. шведский химик И.Берцелиус определил атомные веса 46 элементов. В середине прошлого века русский химик А.М.Бутлеров сформулировал атомную теорию, объяснявшую связи атомов в молекулах, и подтвердил ее, синтезировав ряд новых органических веществ. В 1869 году великий русский химик Д.И.Менделеев открыл знаменитый периодический закон, показывающий зависимость свойств элементов от их атомных весов. В 1873 году голландский физик Я.Д. Ван-дер-Ваальс доказал реальность существования молекул.

В 1859 году физик Г.Кирхгоф и химик Р.Бунзен разработали принципы спектрального анализа и выдвинули гипотезу о наличии связи между свойствами атомов и их спектров. В 1879 году Й.Стефан установил закон излучения абсолютно черного тела, а в 1884 году этот же закон, исходя из теории Максвелла, теоретически вывел Л.Больцман. В 1896 году немецкий физик Р.Вин вывел закон теплового излучения для коротковолновой области спектра. А в 1900 году известные английский физик Рэлей открыл закон теплового излучения для длинноволновой области, который противоречил выводам Вина. В том же году немецкий физик М.Планк, опираясь на работы Больцмана, преодолел это противоречие, сформулировав закон распределения энергии в спектре абсолютно черного тела, согласно которому атомы излучают энергию не непрерывно, а квантами.

В 1859 году немецкий физик Ю.Плюккер изобрел катодную трубку и открыл катодные лучи. Это изобретение сделало возможным открытие В.Рентгеном Х-лучей в конце 1895 года. Несколько месяцев спустя, в 1896 году, под прямым влиянием этого открытия французский физик А.Беккерель открыл явление радиоактивности. В 1897 году английский физик Дж.Дж.Томпсон разгадал природу катодных лучей и открыл электрон. В 1898 году французские физики П.Кюри и М.Склодовская-Кюри открыли явление радиоактивного распада.

В 1903 году Дж.Дж.Томпсон предложил первую модель атома, согласно которой в положительно заряженную сферу вкраплены электроны, подобно пудингу с изюмом. В то же году французский физик Ж.Перрен предложил планетарную модель атома, а в 1908 году экспериментально доказал существование атомов, используя барометрическую формулу Больцмана.

Решающий шаг в открытии атомов в 1911 году сделал Э.Резерфорд, когда в результате исследования взаимодействия альфа-частиц с веществом предложил и экспериментально обосновал планетарную модель атома. Ее справедливость в том же году подтвердил Дж.Чедвик, определив диаметр атомного ядра.

Однако модель Резерфорда не могла объяснить, почему вращающийся вокруг ядра электрон не излучает непрерывно энергию и не падает на него, как то следовало из теории. Это противоречие в 1913 году преодолел датский физик Н.Бор, исходя из идей Планка и Эйнштейна предложивший квантовую модель атома. А в 1919 году американский физик и химик И.Лангмюр предложил новую модель, объяснявшую, как распределяются на орбитах электроны, и, следовательно, химическую активность атомов.

Завершился 2500-летний марафон идей, но цепная реакция идей на этом не прекратилась. Вот лишь капля этой эстафеты.

Открытие электрона привело к изобретению Дж.Флемингом в 1904 году вакуумного диода возникла электроника. Открытие рентгеновских лучей привело к созданию новых методов исследования и диагностики. Благодаря им Дж.Уотсон и Ф.Крик в 1953 году сделали величайшее открытие XX века в биологии открыли структуру молекулы ДНК. Открытие радиоактивности привело к возникновению ядерной физики и энергетики, оказало огромное влияние на развитие химии, генетики, астрофизики, материаловедения и т.д.

Подведем некоторые итоги нашего маленького расследования.

 

Ставка на… победу!

Состояние науки и техники на каждый момент времени характеризуется общим уровнем развития науки и техники0, то есть всей совокупностью знаний и технических возможностей, накопленных предыдущим развитием. Эту совокупность великий Вернадский назвал ноосферой, или сферой разума. Он пришел к выводу, что развитие ноосферы есть закономерный, природный процесс, не зависящий от воли и желания отдельных людей.

Из рассмотренного выше примера хорошо видно такое важное условие как преемственность развития науки и техники0. Суть его в том, что любое новое достижение науки и техники 1обяза1тельно 0опирается на предыдущие. Действительно, Резерфорд не мог бы провести свои знаменитые эксперименты, если бы не было открыто явление радиоактивности. Томпсон не открыл бы электрон, а Рентген Х-лучи, если бы в свое время не была изобретена катодная трубка. А последняя не могла быть создана без работ М.Фарадея, Э.Ленца, А.Ампера, Г.Эрстеда и многих других предшественников.

Второе важное условие развития науки и техники взаимовлияние между различными областями науки и техники0. Суть его в том, что толчком к развитию какой-либо области науки или техники очень часто становится достижение иное, подчас весьма далекой, области. Представление о том, что физику развивают только физические идеи, биологию только биологические, авиацию только достижения в самолетостроении и т.д., ошибочно. В реальности все они очень тесно переплетены друг с другом. На рис.40 условно показаны возможные взаимовлияния между различными областями науки и техники.

На приведенном выше примере открытия атома нетрудно выя

 

Вернадский В.И. Научная мысль как планетное явление. М.: Наука, 1991. С.51.

 

вить такие взаимовлияния. Рассмотрим еще несколько примеров.

На рубеже XVI-XVII вв. была создана новая техническая система микроскоп. В конце XVII века голландский мастер А.Левенгук довел увеличение микроскопа до 300 раз, и это техническое изобретение произвело подлинный переворот в биологии, дало жизнь микробиологии.

Но и современная биология накопила огромный потенциал знаний, которым может щедро поделиться с техникой будущего. Уже сейчас разрабатываются методы извлечения металлов из руды и морской воды с помощью микроорганизмов. В нашей стране созданы первые действующие модели биоэлектростанций на ферментах с к.п.д. 80-90%! Во многих странах разрабатываются высокочувствительные биодатчики на базе растительных и животных тканей для обнаружения различных веществ и излучений.

Захватывающие перспективы открываются в области создания биокомпьютеров. Возникла даже новая область техники биоэлектроника или молекулярная электроника. Но и это не предел.

Одна хромосома человека при объеме чуть более 10 кубических микронов хранит информацию, для размещения которой потребовалось бы четыре тысячи томов по пятьсот страниц в каждом! Фантастическая плотность информации, перед которой самые перспективные запоминающие устройства НИЧТО!

Итак, 1появление нового становится возможным, как только в 1общем уровне развития науки и техники возникают соответству1ющие для этого предпосылки. 0Кстати, именно этим и объясняется эффект параллельных открытий и изобретений, когда люди, работая независимо друг от друга почти одновременно приходят к одному и тому же результату. Вот несколько таких примеров.

1846 год. Астрономы Ж.Леверье и Дж.Адамс независимо друг от друга предсказали существование планеты Нептун.

1859 год. Биологи Ч.Дарвин и А.Уоллес независимо сформулировали основные положения теории эволюции.

1876 год. А.Белл заявил на изобретение телефона. Два часа спустя (!) с той же идеей в Патентном бюро появился Э.Грей.

1897 год. В январе немецкий физик Э.Вихерт открыл электрон, а три месяца спустя о свое открытии сообщил Томпсон.

1954 год. Физики А.М.Прохоров, Н.Г.Басов и Ч.Таунс почти одновременно создали квантовый генератор.

1962 год. Советский физик Ю.Н.Денисюк и сотрудники Мичиганского университета Э.Лейт и Ю.Упатниекс получили первые голографические изображения.

С точки зрения проблемы правильного выбора творческой Цели необходимо упомянуть и о противоположных примерах, когда попытки открытий и изобретений оставались незамеченными или вообще не достигали своей цели.

Первая половина XIII века. Иордан Неморарий сформулировал основные законы движения, которые четыре века спустя заново переоткрыл Галилей.

Первая половина XIX века. Английский математик Ч.Бэббидж сформулировал принципы работы вычислительной машины и разработал проект механического "компьютера". Реализовать идею на механическом уровне было невозможно. Только достижения электроники позволили к 1946 году построить первый компьютер.

1868 год. Французский ученый Н. де Сен-Виктор обнаружил потемнение фотопластинки в присутствии солей урана. Но сообщение было забыто, поскольку наука еще не приблизилась к необходимости понимания глубинных основ строения вещества, возникшей после открытия В.Рентгена. А спустя 28 лет А.Беккерель в аналогичных опытах открыл радиоактивность.

1869 год. Г.Мендель опубликовал открытые им законы генетики. Но потребовались многие открытия, в частности, открытие хромосом, чтобы роль наследственности была оценена по достоинству. В 1900 году законы генетики переоткрыли сразу три биолога Э.Чемрак, Г. де Физ и К.Корренс.

1920 год. Польский физик М.Вольфке предложил новую идею получения изображений, ничем не отличающуюся от идеи голографии, предложенной через 27 лет Д.Габором. Идея была неосуществима из-за отсутствия когерентных источников света.

Главная ошибка, которая совершалась в этих случаях и многих других, состояла в опережении возможностей и потребностей общего уровня развития науки и техники, т.е. в нарушении условий преемственности и взаимовлияния.

Развитие науки и техники можно сравнить с водохранилищем. Пока уровень низок, вода надежно заперта. Но вот уровень приближается к верхнему краю, в отдельных, наиболее низких местах, вода тоненькими потоками устремляется вперед. По мере подъема воды таких мест становится все больше и больше. И, наконец, наступает момент, когда вода захлестывает плотину и бурным потоком устремляется дальше… к новой плотине.

Итак, развитие науки и техники это сложный самоорганизующийся, саморегулирующийся процесс, пронизанный множеством прямых и обратных связей, процесс накопления и преодоления множества больших и малых противоречий. Здесь нет мелочей: каждый, даже небольшой шаг вперед повышает общий уровень, создает предпосылки для последующих, более крупных шагов.

Знание таких важных условий развития науки и техники, как преемственность и взаимовлияние, позволяют сформулировать

два простых правила, следование которым поможет избежать грубых ошибок в постановке творческих Целей.

1.При выборе творческой Цели следует оценивать ее принципиальную достижимость, исходя из реальных возможностей и 1потребностей существующего уровня науки и техники.

2.При выборе творческой Цели в какой-либо области науки или техники всегда следует учитывать достижения других, смежных областей.