ГИДРОМЕТЕОРОЛОГИЧЕСКИЕ РАБОТЫ

2.134. Гидрометеорологические и промерные работы должны быть обязательной частью комплексных изысканий, проводимых на всех крупных многофакторных оползнях ЮБК. Виды и объемы этих работ определяются в зависимости от местоположения и характера оползня, поставленных задач и наличия архивных материалов.

2.135. Задача этих изысканий состоит в том, чтобы оценить местные гидрометеорологические условия и на основе использования материалов длительных наблюдений гидрометеорологических станций (или используя имеющиеся расчетные методы) получить режим гидрометеорологических факторов на изучаемом склоне ЮБК и их влияние на оползневые процессы.

2.136. Основной задачей специалистов-гидрологов при определении влияния гидрометеорологических факторов на оползневые процессы ЮБК является поиск имеющихся материалов многолетних наблюдений и исследований и решение вопроса о способах их использования.

При необходимости в случае, …
когда материалы стационарных наблюдений не могут характеризовать участок изысканий (станции значительно удалены от объекта изысканий или местные условия сильно отличаются от общего гидрометеорологического режима ЮБК), должны быть выполнены специальные гидрометеорологические наблюдения силами изыскательской организации. Методика и организация гидрометеорологических работ изложены в соответствующих наставлениях Гидрометеослужбы и ряде других источников.

Примечание. Если изыскательская организация не может выполнить необходимые гидрометеорологические и промерные работы своими силами, она может привлечь для этой цели специализированные организации (в частности, близрасположенные станции Гидрометеослужбы) на договорных началах.

2.137. Целью проведения гидрометеорологических работ на оползневых склонах ЮБК является получение данных об абразионной деятельности моря, вдольбереговой миграции наносов, эрозионной деятельности рек, твердом стоке рек, атмосферных осадках (их количестве, режиме, характере), испаряемости (и испарении с поверхности почвы и грунтовых вод с характерных глубин), конденсации и др.

2.138.Абразионная деятельность моря изучается на подмываемых морем оползневых склонах с целью получения данных, необходимых для прогнозирования возможности активизации существующих и возникновения новых оползней.

При этих исследованиях должны быть получены следующие данные:

наличие и пределы распространения морской абразии на исследуемом участке;

качественные характеристики процесса абразии (формы и размеры ниш и других форм подмыва, характер обрушения и др.);

количественные характеристики процесса абразии (количество грунта, унесенного с метра за единицу времени, отступание бровки берегового обрыва за единицу времени);

зависимость интенсивности абразии от гидрометеорологических, геологических и гидрогеологических условий.

2.139. Наблюдения за абразионной деятельностью моря, как правило, должны сопровождаться: изучением вдольберегового движения наносов, изучением морского волнения, наблюдениями за колебанием уровня моря при нагонах, специальными наблюдениями за прибоем и накатом, размывными течениями, волновыми скоростями и др.

2.140. Эрозионная деятельность рек (ручьев), стекающих по оползневому склону, изучается для выяснения влияния водотоков на оползневой процесс и получения необходимых данных для проектирования (в частности, водоотводных сооружений).

В результате этих исследований должны быть получены:

качественные характеристики процесса речной (овражной) эрозии;

характеристики зон размыва (подмыва склона при разных уровнях и расходах водотока;

количественные характеристики интенсивности процессов размыва;

зависимости интенсивности размыва от гидрометеорологических (уровни, сток, осадки), геологических и гидрогеологических условий.

2.141. Наблюдения за деятельностью водотоков (если она недостаточно охарактеризована имеющимися материалами) следует вести по методике Гидрометеослужбы.

2.142.Данные изучения гидрометеорологических факторов, воздействующих на оползневой процесс (например, атмосферных осадков, деятельности рек и ручьев, подмыва склона морем и др.), проводившегося специализированными организациями (системы Гидрометеослужбы и др), должны быть собраны, проанализированы и соответствующим образом обработаны.

В отдельных случаях для получения необходимых характеристик следует использовать, кроме данных фактических наблюдений, также расчетные методы.

2.143. При изучении водного баланса оползневого склона, в связи с характерными для ЮБК резкими изменениями микроклиматических условий, необходимо организовывать временные гидрометеорологические посты. Методика работ на этих постах должна выполняться по рекомендациям Гидрометеослужбы.

2.144. Большое внимание при проведении изысканий следует уделять промерным работам на море, в результате которых должны быть получены данные об особенностях рельефа подводного склона (его крутизна, наличие ступеней, дугообразный контур подводного языка оползня и др.).

2.145. Ширина полосы промеров определяется гидрологом совместно с инженером-геологом в зависимости от предполагаемого местоположения языка оползня и уточняется в процессе выполнения работ. Акватория промеров должна превышать площадь языка оползня.

2.146. После установления контуров подводного языка оползня назначаются повторные промеры по покрывающим всю его площадь профилям (через 60-100 м), которые следует производить три-четыре раза в год и каждый раз после сильных и продолжительных штормов.

Промеры рекомендуется производить по створам с инструментальной фиксацией точек промеров и эхолотом по створам или компасным курсам (галсам).

2.147. Совмещая планы повторных промеров за разные сроки, можно получить качественную и количественную характеристики деформации подводного языка, а анализируя гидрометеорологические условия за период между промерами (режим волнения, сгонно-нагонные колебания уровня и др.), можно объяснить причины этой деформации. Необходимо также использовать имеющиеся гидрографические карты и планы промеров дна участка за разные годы и путем их сравнения попытаться оценить причины и величину деформации подводного языка оползня за многолетний период.

2.148. При помощи подводных работ (например, с использованием автономной дыхательной аппаратуры на сжатом воздухе) рекомендуется производить:

а) обследование состояния подводного берегового склона и выявление характерных участков с признаками локальных деформаций;

б) периодические наблюдения за рельефом языка оползня (с целью выявления его изменений в зависимости от воздействия различных факторов).

Примечание. При обнаружении в районе языка оползня крупных глыб или валунов (которые не могут перекатываться волной) можно зафиксировать их местоположение (путем, например, вывода на поверхность воды прикрепленной к валуну рейки или штыря) и систематически следить геодезическими методами за смещениями валунов. Вместо валунов с той же целью можно устанавливать на языке оползня, специальные предметы (якоря, бетонные плиты и т. п.);

в) инструментальные исследования уровня поверхности донных осадков, исследования режима локальных перемещений под воздействием волнения, течения и др.;

г) отбор проб грунтов для лабораторных исследований и другие работы.

2.149. В результате подводных исследований должны быть получены следующие материалы:

карта изолиний поверхности морского дна с элементами морфологии подводной части оползневого склона и геологическим описанием слагающих дно поверхностных отложений;

таблица и схема распределения донных осадков с их физико-механическими характеристиками;

схемы перемещения закрепленных предметов (якорей, штырей и т. д.) в увязке с причинами, вызывающими эти перемещения — записи, зарисовки, материалы кинофотосъемки отдельных участков дна и т. д.

2.150. Метеорологические исследования на оползневых склонах ЮБК, выполняются для:

установления влияния на режим оползневых процессов региональных метеорологических условий;

установления влияния на устойчивость оползневых склонов микроклиматических условий;

изучения метеорологических факторов как составляющих водного баланса оползневых склонов;

получения необходимых данных для проектирования системы поверхностного водоотвода.

2.151. Для выявления зависимости оползневой активности от метеорологических факторов (например, от количества и режима атмосферных осадков) и для получения метеорологических данных для составления представления о водном балансе оползневого склона, необходимо получение количественных характеристик метеорологических условий. С учетом большой пестроты микроклиматических условий ЮБК, при большом отдалении стационарных станций Гидрометеослужбы от участка изысканий рекомендуется организовывать на изучаемом склоне метеорологические станции и посты силами изыскательской организации, которая может передать эту работу по субподрядному договору специализированной организации.

2.152. В связи с тем, что в условиях большого перепада высот южнобережного склона Крымских гор (500 м и более) количество атмосферных осадков резко изменяется даже на небольшом расстоянии в направлении сверху вниз по склону, то возникает необходимость расположения наблюдательных постов на различных по высоте участках склона.

2.153. Основными метеорологическими элементами при изучении оползневых процессов на ЮБК должны быть:

характер и количественное распределение атмосферных осадков (причем особое внимание следует уделять осадкам в виде моросящих затяжных дождей), время, условия, характер и распределение снегового покрова;

испарение с поверхности почвы и водной поверхности;

температурный режим.

2.154.Обработка метеорологических данных должна производиться, как правило, с соблюдением требований соответствующих пособий Гидрометеослужбы, но в зависимости от поставленных задач могут применяться и другие методы обработки.

2.155.Кроме непосредственного влияния режима метеорологических факторов на устойчивость оползневых склонов следует оценивать также влияние климатических изменений, проявляющееся через другие факторы. Например, климат определяет тип и интенсивность выветривания, характер растительности, количество и режим поверхностных и подземных вод, определяет время проявления и интенсивность процессов эрозии и абразии. Определение таких климатических влияний на оползневые процессы должно базироваться на изучении климатических факторов в историческом разрезе.

2.156.В отчете об изысканиях должно быть оценено влияние климатических факторов, в частности атмосферных осадков, в качестве факторов оползнеобразования:

а) определено их влияние на сезонные колебания величины коэффициента устойчивости склонов и на интенсивность оползневого процесса;

б) определена зависимость оползневых процессов от многолетних влажных периодов, от годовых сумм осадков и особенно от их месячных сумм;

в) установлено влияние на оползневой процесс ливневых единоразовых осадков редкой повторяемости (например, таких, когда за сутки выпадает до 25 % среднегодовой нормы).

2.157. После окончания изыскательских работ все оборудованные в процессе изысканий гидрометеорологические пункты для продолжения начатых при изысканиях наблюдений передаются (если в этом окажется необходимость) по акту оползневой станции, противооползневому управлению или же гидрометеорологическим станциям ГУГМС.

И. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПОЛЗНЕВЫХ ПРОЦЕССОВ

2.158. Из статистических методов исследования оползневых процессов рекомендуется применять корреляционный и регрессионный анализы, которые позволят выявить связь между смещением оползня и интенсивностью основных природных факторов и дать оценку роли последних в оползневом процессе.

Применение этих методов особенно полезно для познания закономерностей развития крупных многофакторных оползней ЮБК. Для этого необходимо иметь данные длительных стационарных наблюдений за скоростью смещения оползня и интенсивностью природных процессов.

2.159. Поскольку развитие большинства оползней ЮБК (особенно крупных) происходит под влиянием многих природных факторов, то следует: выявить наиболее результативный фактор, дать оценку статистической связи отдельных факторов с интенсивностью оползневого процесса, а также установить роль в оползневом процессе каждого фактора.

2.160. Поскольку результаты наблюдений за смещением оползня, равно как и результаты наблюдений за природными факторами, — величины случайные, то зависимость между ними носит вероятностный характер и изучается с применением корреляционного анализа, основная задача которого состоит в определении с заранее заданной надежностью пределов величины оползневого смещения, которые оно может иметь, если известны пределы изменения влияющего на него фактора.

Для определения тесноты связи между двумя величинами применяется парная корреляция, для изучения зависимостей между несколькими величинами — множественная корреляция.

2.161. Для выявления тесноты связи между двумя величинами (парная корреляция) следует определить коэффициент корреляции r как эффективную меру связи в условиях линейной корреляции или корреляционное отношение ή как меру тесноты связи между величинами, распределение которых может отличаться от нормального, а связь аппроксимироваться нелинейными функциями.

Примечание. Коэффициент корреляции и корреляционное отношение могут принимать значения от 0 до 1. Чем ближе значение r и ή к 1, тем теснее связь между оцениваемыми величинами.

2.162. Анализ зависимостей двух величин X и Y начинается с построения точечной диаграммы, которая позволяет приближенно установить наличие связи между этими величинами. Если по точечной диаграмме или по другим соображениям (теоретическим предпосылкам) предполагается линейная зависимость между величинами, то задача дальнейших исследований состоит в определении коэффициентов уравнения линейной регрессии типа Y = аХ + b.

Максимально приближающее искомую зависимость к теоретической является такое уравнение регрессии, при котором сумма квадратов отклонений эмпирических значений Y от его теоретических, вычисленных по уравнению регрессии, минимальна. Это положение лежит в основе метода наименьших квадратов, используя который можно найти такие коэффициенты (уравнения), при которых уравнение соответствует приведенным условиям. Уравнение регрессии может быть и более высоких степеней. При большом объеме выборок для расчета коэффициентов регрессий следует использовать существующие программы статистической обработки данных на ЭВМ.

2.163. Парный корреляционный анализ следует применять для получения предварительных сведений о связи оползневого процесса с тем или иным фактором, т. е. для предварительной оценки относительного значения отдельных факторов в изменении оцениваемой величины на первом этапе этих исследований.

Поскольку парный корреляционный анализ не дает возможности достаточно точно прогнозировать изменение характеристик оползневого процесса, то для этой цели следует использовать метод множественной корреляции, когда учитывается влияние нескольких природных факторов. Показателями тесноты связи между характеристиками оползневого процесса и характеристиками природных факторов является коэффициент множественной корреляции. (R), также принимающий значения от 0 до 1. Значение R2 можно истолковывать как математически установленную долю вариаций характеристик оползневого процесса, появление которой обязано влиянию изучаемых факторов, а 1 —R2 как долю, которая не может быть объяснена влиянием этих факторов.

2.164. Методы регрессивного анализа рекомендуется применять для оценки не только связи характеристики с определенной совокупностью факторов, но и тесноты ее связи с отдельными, входящими в анализ факторами. Частные коэффициенты корреляции, рассчитанные при статистической обработке материалов, определяют связь характеристики процесса с каждым из рассматриваемых факторов при исключении влияния других факторов, искажающих эту связь. Методами математической статистики оцениваются точность и достоверность полученных показателей тесноты связи.

2.165. Используя различные сочетания факторов, влияющих на ход оползневого процесса по вычисленным и откорректированным коэффициентам множественной корреляции, можно получить представление о наиболее результативном сочетании природных факторов, а по частным коэффициентам корреляции — об относительной роли каждого из них в развитии оползневого процесса.

2.166. Основным показателем оползневой активности в условиях ЮБК являются данные инструментальных наблюдений за смещением геодезических реперов, установленных на оползневых склонах (проводимых три раза в год). Дополнительной информацией об оползневом процессе могут служить данные наблюдений за маяками, установленными на деформируемых оползнями зданиях и сооружениях (замер деформаций маяков следует проводить ежемесячно). Данные инструментальных наблюдений за оползневыми подвижками используются для выявления (при помощи корреляционного и регрессионного анализов) тесноты и характера связи интенсивности оползневого процесса с такими природными факторами, как количество выпавших на оползневой склон атмосферных осадков, колебание уровня грунтовых вод (или расхода источников), интенсивность сейсмических явлений, интенсивность волнения, скорость размыва берегов, аккумуляция и размыв береговых накоплений.

2.167. Хотя оползни (как и большинство других геологических систем) представляют собой нелинейные системы, тем не менее в случаях, когда выборка наблюдений за оползневым процессом мала, при анализе можно применять линейные модели зависимостей. Если же выборка представительна и позволяет получить надежные оценки тесноты связи, рекомендуется исследовать нелинейные аппроксимации зависимостей характеристик оползневого процесса и оползнеобразующих факторов (расчет уравнений второй, третьей и т. д. степеней).

2.168. Для выявления изменения влияния природных факторов на оползневой процесс во времени величины смещения реперов необходимо сопоставить с воздействием факторов в различные сроки: в год наблюдений за смещением, за два, три года и т. д., а деформации маяков на зданиях — с воздействием факторов в тот же месяц, предыдущий, за два, три и т. д. предыдущих. С методической точки зрения, получение системы уравнений как нельзя лучше способствует решению поставленной задачи в случае, когда заранее неизвестны характер и теснота связи процесса как с каждым фактором в отдельности, так и со всеми, вместе взятыми, но требуется их оценить. Такой подход дает возможность выявить взаимоотношения изучаемых процессов во времени и значение каждого фактора в развитии оползневого процесса.

К. ЛАБОРАТОРНОЕ МОДЕЛИРОВАНИЕ

2.169. Лабораторное моделирование следует проводить в целях изучения напряженного состояния массивов горных пород, слагающих оползневые склоны ЮБК, выявления в толще пород склона зон дефицита прочности (фактических и потенциальных зон оползневого скольжения), оценки устойчивости склона и уточнения механизма оползневого смещения. Решение всех задач требует применения комплекса методов моделирования.

2.170. С учетом большой сложности геологического строения склонов ЮБК (неоднородность литологического состава коренных и четвертичных склоновых отложений, невыдержанные условия залегания слоев коренных пород и сложное распределение в склоне зон выветривания, неоднородность прочностных и деформативных свойств пород, большая высота и крутизна склонов и др.) проведение моделирования в рассматриваемом регионе отличается большой трудоемкостью, сложностью моделей и требует построения детальных инженерно-геологических разрезов (с отражением на них местоположения и зон разрывных тектонических нарушений, характера и степени нарушенности коренных флишевых пород, строения толщи оползневых накоплений, всех зафиксированных в склоне зон ослабления, а также гидрогеологических условий), а также получения данных о прочностных и деформационных характеристиках пород в пределах всех выделенных в склоне инженерно-геологических элементов.

2.171. Для получения картины распределения напряжений в склоне следует применять методы фотоупругости и тензометрической сетки, позволяющие строить модели неоднородного строения, имитирующие весьма сложные по строению склоны ЮБК, в которых принимают участие породы с различными деформационными свойствами.

2.172. Полученные на моделях данные о напряженном состоянии, а лабораторными и полевыми методами — данные о сопротивлении сдвигу могут быть использованы для расчета величины прочности пород в различных точках массива в нескольких сечениях, т. е. для получения картины распределения прочности в пределах исследуемого склона.

2.173. Сопоставляя распределение напряжений с распределением прочности пород, следует определять степень устойчивости различных участков склона и выявлять зоны дефицита прочности (зоны, где величины скалывающих напряжений близки к величинам прочности пород или же ниже их), которые и являются фактическими и потенциально возможными зонами оползневого смещения в изучаемом склоне.

2.174. Модель оползневого склона ЮБК должна учитывать по возможности точно структурно-тектонические особенности склона (и, в частности, наличие разрывных тектонических нарушений), наличие оползней разных порядков, многослойность оползневых смещений, наличие в толще пород склона нескольких локальных или же выдержанных на большом протяжении зон ослабления (фактических и потенциально возможных зон оползневого скольжения).

2.175. Для проверки рабочей гипотезы о механизме оползневого смещения, определения роли отдельных факторов оползнеобразования (абразии, эрозии, искусственной подсечки и пригрузки склонов) и роли намечаемых для стабилизации оползня противооползневых мероприятий (пригрузка в языке оползня, срезка его головной части и др.) рекомендуется использовать модели из эквивалентных материалов.

2.176.При больших объемах изыскательских работ на первой стадии проектирования и при наличии возможности моделирование целесообразно выполнить до окончания изысканий с тем, чтобы на завершающем этапе изысканий особое внимание уделить выявленным при моделировании участкам максимальной концентрации напряжений и участкам неблагоприятного соотношения между скалывающими усилиями и прочностью пород. Из всех таких участков должны быть отобраны дополнительные образцы пород для изучения их прочностных, деформативных и реологических свойств, а также особенностей микротекстуры и характера структурных связей.

2.177. Для более достоверной оценки степени устойчивости склона и всестороннего учета его состояния данные моделирования следует сопоставлять с данными расчетов устойчивости склона (в соответствующих заданных состояниях).

Л. РАСЧЕТЫ УСТОЙЧИВОСТИ ОПОЛЗНЕВЫХ СКЛОНОВ

2.178. Для оценки устойчивости оползневых склонов ЮБК, наряду с другими принятыми в инженерной геологии методами, рекомендуется применять также расчетные методы.

2.179.Расчеты, как правило, следует применять при изысканиях, ведущихся для первой стадии проектирования.

2.180. Расчеты рекомендуется использовать для: сравнительной количественной оценки роли отдельных факторов оползнеобразования в снижении коэффициента устойчивости склона; оценки устойчивости склона на момент изысканий (с учетом ранее осуществленных на склоне противооползневых мероприятий) и для прогнозирования наиболее неблагоприятных условий устойчивости склона;

обоснования рекомендуемых в отчете противооползневых мероприятий.

2.181. Рекомендуется применять методы, позволяющие вести расчет устойчивости склона относительно поверхности смещения любой формы (установленной или предполагаемой на основе изучения условий залегания и свойств пород):

метод многоугольников сил (Шахунянц);

метод горизонтальных сил (Маслов);

метод последовательного суммирования по отсекам (Петрова-Ясюнас).

Для получения ориентировочных значений Ку при массовых расчетах целесообразно применять методы Маслова и Петровой-Ясюнас как наиболее простые, а для более строгих расчетов — метод Шахунянца.

Примечание. На отдельных крутых участках склонов (абразионных, эрозионных, оползневых уступах, сложенных сравнительно однородными породами), где обычно возникают относительно небольшие оползни срезания, целесообразен метод расчета устойчивости по круглоцилиндрической поверхности смещения.

2.182. Расчеты рекомендуется проводить для оценки как общей устойчивости склона, т. е. возможности образования (или повторной подвижки) оползня первого порядка, так и локальной его устойчивости, т. е. возможности возникновения на теле оползня первого порядка локальных оползней второго и более высоких порядков (за исключением оползней-потоков и оползней-сплывов, для прогноза образования и развития которых рекомендуется пользоваться методами, учитывающими реологические свойства пород). Так как в пределах сложных оползневых систем отдельные их части могут иметь разную степень устойчивости, рекомендуется также выполнять расчеты для разных частей системы с учетом особенностей их строения.

2.183. Расчеты устойчивости оползневых склонов следует производить по всем выявленным или потенциально возможным поверхностям скольжения. В частности, рекомендуется проверять расчетом возможность смещения по поверхности, выходящей в подводную часть склона, или возможность локального среза оползневой толщи в месте наиболее слабого ее сечения.

2.184. Инженерно-геологические разрезы масштаба 1:1000 и крупнее, являющиеся геологической основой расчетов, должны содержать следующие данные, необходимые для расчетов:

границы структурных элементов оползневого склона (кровли коренных пород, оползневых ступеней, отчленившихся блоков флишевых и верхнеюрских пород, чехла перекрывающих смещенные блоки «рыхлых» накоплений и пp.);

очертания всех прослеженных в склоне ослабленных зон — фактических и потенциальных зон оползневого смещения: трещин различного происхождения (оползневых, тектонических, бортового отпора и др.), старых поверхностей оползневого скольжения, поверхностей раздела (коренных пород и склоновых отложений и др.), пластичных глинистых прослоев на контактах с обводненными зонами, зон тектонических нарушений (выделяя особо плоскости сместителей с «зеркалами» скольжения и зоны интенсивного дробления);

участки различного механизма смещения (скольжение, срезание, течение);

расчетные значения показателей физических и прочностных свойств пород (γ, φ, С) для каждого выделенного инженерно-геологического элемента;

положение депрессионной поверхности потока подземных вод (как свободного, так и напорного горизонта), а также наиболее низкое и наиболее высокое положение уровня последних (наблюдаемое или прогнозируемое), мощность обводненной зоны;

очертание поверхности склона (желательно до и после оползневого смещения);

данные об интенсивности абразии (эрозии) за определенный промежуток времени (объем размытых пород, величина отступания подошвы или бровки берегового уступа);

данные о сейсмичности территории в пределах участка (по результатам сейсмического микрорайонирования);

контуры, трассы, сечения пересекаемых разрезом существующих или запроектированных зданий и сооружений (в том числе противооползневых) с указанием их веса и глубины заложения подошвы фундамента.

2.185. Если за период, истекший со времени проведения топографической съемки до проведения изысканий, произошли ощутимые изменения в рельефе поверхности склона, возникает необходимость в проведении специальных топографических работ и, в частности, нивелировки по створам, по которым построены геологические разрезы.

2.186. Разбивку на отсеки при расчетах следует производить с учетом типичного для оползневых склонов ЮБК ступенчатого характера дневной поверхности склона и поверхности оползневого ложа, что дает возможность: выделить активные и относительно пассивные участки (зоны) оползня, оценить устойчивость отдельных участков оползневого склона, обосновать место расположения на склоне противооползневых сооружений.

2.187. Ввиду трудности установления абсолютного (истинного) значения коэффициента устойчивости оползневых склонов (из-за неточности значений входящих в расчет показателей прочности пород, полученных при лабораторных испытаниях) при сравнительной количественной оценке роли отдельных факторов или отдельных противооползневых мероприятий рекомендуется пользоваться методом обратных расчетов. Найденная обратным расчетом, при значении коэффициента устойчивости, равном единице, средняя величина сопротивления сдвигу по поверхности скольжения используется в последующих прямых расчетах для сравнительной оценки роли оползнеобразующих факторов и противооползневых мероприятий.

2.188. Расчетами рекомендуется определять влияние на устойчивость склона следующих факторов:

природных — абразии, эрозии, фильтрационного и гидростатического давления подземных вод (с учетом колебания их уровня во времени), сейсмических колебаний, разупрочнения или упрочнения пород во времени;

антропогенных — искусственных подсечек и пригрузок склона (отвалами, зданиями, сооружениями, насыпями и др.), искусственного обводнения склона, взрывов (через сейсмический эффект) и др.

2.189. Оценку влияния на устойчивость склона гидрогеологического фактора рекомендуется давать исходя из:

наличия подземных вод (часто напорного характера), содержащихся в трещиноватых и раздробленных флишевых породах в пределах оползневых депрессий и оказывающих взвешивающее воздействие на оползневую толщу;

наличия подземных вод, заключенных в отдельных прослоях и линзах водопроницаемого грунта, содержащихся в самой толще оползневых накоплений (несмотря на затрудненные условия фильтрации этих вод, их следует рассматривать при расчетах как единую гидравлически связанную систему, оказывающую гидростатическое и фильтрационное давления на оползневую толщу);

периодически резкого повышения (в дождливый сезон) уровня подземных вод в толще оползневых накоплений, что выражается в увеличении гидростатического и фильтрационного давления, снижении прочности пород в зоне сезонного обводнения;

обводнения оползневого тела на всю его мощность при необходимости учета максимального (реально возможного) воздействия гидрогеологического фактора на величину коэффициента устойчивости склона.

2.190. Для оценки длительной устойчивости склона и проверки вероятности снижения коэффициента его устойчивости до предельного значения, а также для оценки эффективности проектируемого комплекса противооползневых мероприятий следует проводить расчеты для случаев наиболее неблагоприятных (но реально возможных) условий работы склона с учетом изменений соотношения сдвигающих и удерживающих сил на склоне при:

а) подрезках склона, подмывах, нагружении в верхних частях;

б) неблагоприятных для устойчивости склона воздействиях сезонных (периодических) и эпизодических колебаний влияния отдельных факторов (например, высокого обводнения склона в годы с большим, намного превышающим норму количеством атмосферных осадков, сильных землетрясений);

в) дальнейшем снижении (вплоть до минимальных значений) прочности пород в формирующихся в склоне зонах ослабления;

г) возможном одновременном наложении ряда неблагоприятных для устойчивости склона факторов (например, сильного землетрясения и высокой степени обводненности склона).

2.191. Для ускорения расчетов (связанных с многочисленными громоздкими вычислительными операциями) рекомендуется применение ЭВМ, что позволит: быстро провести большее число расчетов для различных вариантов условий на склоне, повысить точность расчетов за счет исключения возможных механических ошибок при выполнении большого объема и громоздкости математических вычислений, оценить одновременно большое число факторов различными методами.

2.192. Для составления машинной программы расчетов оползневых склонов ЮБК на ЭВМ рекомендуется использовать разработанные в ПНИИИСе алгоритмы (прил. 1).

2.193. Для оценки устойчивости сложных оползневых систем в целом, отдельные участки которых могут значительно отличаться по степени устойчивости, целесообразно пользоваться методом пространственного решения задачи Панюкова.

М. КАМЕРАЛЬНАЯ ОБРАБОТКА МАТЕРИАЛОВ ИЗЫСКАНИЙ

2.194. Характерная для оползневых склонов ЮБК сложность инженерно-геологических условий (для выяснения которых необходимо выполнение большого объема и сложного комплекса изыскательских работ) требует проведения всестороннего углубленного анализа большого количества полученной при изысканиях информации об оползнях и выражения этой информации в предельно лаконичной и в то же время максимально емкой форме.

2.195. Способы выражения информации об оползнях ЮБК различны в зависимости от степени сложности условий, по которым все оползни ЮБК можно разделить на относительно простые оползни сравнительно небольших размеров и сложные крупные оползневые системы со сложными условиями развития и сложным строением оползневой толщи.

2.196. Для относительно простых оползней комплект графических материалов рекомендуется составлять в соответствии с требованиями «Рекомендаций по инженерно-геологическим изысканиям в районах развития оползней», но с применением специальных индексов оползневых накоплений.

Применение специальных индексов позволит:

повысить информативность индексов (показать основные этапы истории формирования оползневой толщи, выделить в ней оползни разных порядков и оползни с разными базисами смещения, показать фации оползневых накоплений);

повысить точность стратиграфо-генетического расчленения оползневой толщи и показать взаимоотношения вовлеченных в оползневую подвижку образований;

показать степень активности оползневого процесса, стадию и фазу развития оползневого цикла.

2.197. Основная информация о простом оползне сводится в формулу

где Т — инженерно-геологический тип оползня;

п — порядок оползня;

б — базис смещения;

ф — фаза развития современного оползневого цикла;

S — стратиграфический индекс оползневых накоплений, отражающий историю развития оползневого склона;

V-объем оползневого тела, м3; выражается через а • 10п;

h — высота склона, на котором возник оползень, м;

ас — крутизна поверхности склона, град, (генеральный угол);

L — длина оползня, км;

b — ширина оползня (в головной, средней, языковой частях соответственно), м;

m — мощность оползневых накоплений (в головной, средней, языковой частях соответственно), м;

fl — форма поверхности оползневого скольжения (обозначается начальной буквой названия поверхности соответствующей формы);

— генеральный угол наклона поверхности скольжения, град.;

Ф — факторы оползнеобразования (обозначаются начальными буквами названий действующих факторов);

v — скорость (средняя) смещения оползня (в головной, средней, языковой частях соответственно), см/год.

2.198. Для сложных оползневых систем, какими являются многие крупные оползни ЮБК, рекомендуется составление специального комплекта графических материалов и структурных формул.

Для сложных оползневых систем составляются структурные формулы: общей структуры (каркаса) системы и полные.

2.199. В формуле общей структуры (каркаса) дается расчленение системы на структурно-тектонические элементы разных порядков. Формулу рекомендуется приводить при составлении тектонической схемы или карты общей структуры (прил. 2).

2.200. Полные структурные формулы (прил. 3) содержат значения основных параметров, характеризующих отдельные элементы и всю систему в целом, а также сведения о тектонических факторах, о литологическом составе оползневых накоплений и исходных пород, о физико-механических свойствах грунтов (путем введения данных по инженерно-геологическим элементам).

Формула дает возможность характеризовать: древнюю и современную оползневую толщу, ее активную и стабилизировавшуюся части, оползневые смещения первого и более высоких порядков, многослойное смещение.

2.201. Комплект графических материалов (карты, разрезы) для сложных оползневых систем должен включать: материалы общего характера, специальные (частные и обобщающие) и вспомогательные.

Материалы общего характера дают общее представление о районе расположения оползневой системы. Наиболее важными из них являются: карты — геологическая, гидрогеологическая, инженерно-геологического районирования, геоморфологическая; детальные инженерно-геологические колонки выработок; сводная инженерно-геологическая колонка участка изысканий.

Специальные материалы относятся непосредственно к оползневой системе и дают представление об инженерно-геологических условиях ее развития в разных аспектах.

Специальные материалы разделяются на частные и обобщающие.

Частные специальные материалы несут информацию по какому-либо одному аспекту развития оползневой системы. К ним относятся: схема тектонических условий развития системы; карты: внутренней структуры оползневой системы, гипсометрии кровли и литологического состава коренных пород, совмещенная с картой зон выветривания, смещенных блоков флишевых пород и зон выветривания в них, зон ослабления, развитых в пределах оползневой системы, микрорайонирования системы по составу факторов оползнеобразования, оползнепроявлений и микрорайонирования системы по механизму оползневого смещения; схематические инженерно-геологические разрезы, иллюстрирующие вышеупомянутые карты и отображающие внутреннюю структуру тела оползня, распределение в разрезе склона зон ослабления, механизм смещения, гидрогеологические условия и др.

Обобщающие специальные материалы составляются на основе отбора с частных специальных материалов основной информации, необходимой для решения тех или иных инженерных вопросов. К ним относятся: карты — сводная инженерно-геологическая (оползневая), микрорайонирования системы по устойчивости, гидрогеологического микрорайонирования системы, прогноза развития оползневой системы; сводные инженерно-геологические разрезы.

Вспомогательные материалы несут дополнительную информацию, которая может быть необходима для построения специальных (частных и обобщающих) материалов. К ним относятся карты: минерализации, химсостава и температуры подземных вод, распространения отдельных структурно-петрологических элементов (характеристика которых необходима для понимания тех или иных особенностей развития оползневой системы, например, карта распространения щебнистых прослоев, используемая для выяснения гидрогеологических условий), проявления отдельных факторов оползнеобразования, распространения отдельных видов зон ослабления (как внутри оползневой системы, так и для территории склона, прилегающей к контуру системы).

2.202. В первую очередь рекомендуется составлять материалы общего характера, во вторую — вспомогательные и специальные частные материалы и в третью — специальные обобщающие.

2.203. На схему тектонических условий развития оползневой системы (см. прил. 2) наносятся:

а) зоны разрывных нарушений и особенности их проявления; участки: с зеркалами скольжения тектонического происхождения, интенсивно раздробленных и милонитизированных пород, повышенного содержания солей (примазки, присыпки) и минералов гидротермального происхождения, поступления подземных вод из коренных пород (в зонах разрывных нарушений) в оползневую толщу и наоборот, пониженного электросопротивления;

б) элементы залегания слоев флишевой толщи и плоскостей сместителей тектонических разрывов;

в) структурно-тектонические блоки разных порядков (по площади им соответствуют структурно-тектонические элементы оползневой системы);

г) знак и направление вертикальных перемещений тектонических блоков;

д) выходы коренных пород на дневную поверхность.

Схема тектонических условий дополняется формулой общей структуры оползневой системы.

2.204. На карте (схеме) внутренней структуры оползневой системы следует показывать:

а) зоны разрывных тектонических нарушений;

б) составные структурно-тектонические элементы оползневой системы;

в) участки с разными типами внутренней структуры тела оползня;

г) сводную таблицу основных структурно-петрологических и инженерно-геологических элементов системы;

д) сводную таблицу основных типов внутренней структуры оползневого тела.

Карта (схема) внутренней структуры дополняется структурной формулой оползневой системы, отражающей состав, количество, взаиморасположение, взаимосвязь составных элементов и их внутреннюю структуру (прил. 3).

2.205. Карта гипсометрии кровли и литологического состава коренных пород, совмещенная с картой зон выветривания, включает:

зоны разрывных тектонических нарушений;

литологические типы коренных пород;

тип и мощность верхней зоны выветривания в пределах каждого тектонического блока (показывается цветом или штриховкой, цифрами); то же, остальных зон выветривания, (показывается цифрами);

участки обводнения (показываются штриховкой);

участки флишевой толщи с прослоями песчаников и алевролитов (показываются штриховкой).

2.206. На карту смещенных (оползневых) блоков флишевых пород, совмещенную с картой зон выветривания в блоках (прил. 4), наносятся:

зоны разрывных тектонических нарушений и тектонические блоки (переносятся с тектонической схемы);

контуры и номера смещенных блоков флишевых пород (как обнаженных, так и погребенных под толщей «рыхлых» накоплений);

стенки срыва (ниши отрыва) оползневых блоков;

направление первоначального и современного смещения оползневых блоков (показывается стрелками);

тип верхней зоны выветривания в блоках (показывается цветом);

основные характеристики смещенных блоков (приводятся в таблице);

участки обводнения блока;

участки блока с прослоями песчаников и алевролитов.

2.207. На карту (схему) зон ослабления наносятся:

зоны разрывных тектонических нарушений;

площади развития зон ослабления разных типов (при необходимости составляются дополнительно карты распространения отдельных видов зон ослабления);

параметры зон ослабления (отметки кровли и подошвы зон ослабления, их мощность, элементы залегания по всем разведочным точкам;

участки повышенного напряжения пород массива и факторы его обусловливающие.

2.208. На карте (схеме) микрорайонирования оползневой системы по факторам оползнеобразования выделяются:

участки, подвергающиеся воздействию разных факторов или их сочетаний; основной фактор оползнеобразования для каждого из структурных элементов оползневой системы.

2.209. Карта оползнепроявлений и микрорайонирования оползневой системы по механизму смещения составляется с учетом карты внутренней структуры оползневой системы и карты зон ослабления и включает:

зоны разрывных нарушений и тектонические блоки разных порядков;

участки наибольшей концентрации напряжений;

геодезические реперы (марки), направления и углы наклонов векторов их смещения, величины горизонтальной и вертикальной составляющих смещения;

оползневые формы рельефа и оползневые трещины на дневной поверхности (с выделением их типов по Тер-Степаняну); деформации зданий, сооружений, растительности; участки системы с разным механизмом смещения; микрорайонирование оползня по сочетанию типов смещения.

2.210. Сводная инженерно-геологическая карта составляется на основе выбора с частных специальных (реже вспомогательных) карт наиболее важной информации, необходимой для решения конкретных инженерных задач.

2.211. На карте микрорайонирования оползневой системы по устойчивости показывается степень устойчивости различных ее структурных элементов, выраженная через коэффициент устойчивости.

2.21,2. На карте гидрогеологического микрорайонирования оползневой системы показываются:

зоны разрывных нарушений;

контуры смещенных блоков коренных пород с выделением обводненных блоков и блоков, содержащих прослои трещиноватых алевролитов и песчаников;

участки поглощения подземных вод, заключенных в оползневых накоплениях, коренными породами в зонах разрывных нарушений;

участки подпитывания подземных вод, заключенных в оползневых накоплениях, водами коренных пород в зонах разрывных нарушений;

участки искусственного питания подземных вод;

участки интенсивного движения подземных вод, сложенные породами с относительно высокой фильтрационной способностью;

участки локального скопления подземных вод с затрудненным водообменом, а также западины в тыловых частях оползневых блоков флишевых пород;

участки сообщения отдельных обводненных зон;

места разгрузки обводненных зон;

безводные участки системы;

гидроизогипсы (гидроизопьезы) поверхности подземных вод различных водоносных горизонтов (обводненных зон), построенные с учетом структуры оползневой системы;

данные специальных работ (электроразведки, комплексного каротажа, опытно-фильтрационных работ, индикаторных опытов и др.)

2.213. На карте прогноза развития оползневых процессов выделяются участки;

возможного развития оползневой системы вширь за счет вовлечения прилегающих территорий;

возможного увеличения глубины захвата существующего оползня;

возможного формирования новых зон ослабления (в коренных породах и в теле оползня), за счет которых может произойти объединение уже существующих локальных зон ослабления в единую, создающую возможность крупного смещения;

возможного возникновения оползней второго и третьего порядка, факторы их вызывающие, типы смещений;

предполагаемого развития наибольших деформаций зданий и сооружений и предполагаемый характер деформаций;

наиболее устойчивые (с наименьшей вероятностью оползневых смещений в пределах заданного интервала времени) и наиболее пригодные для строительного использования.

ПРИЛОЖЕНИЕ 1

АЛГОРИТМЫ РАСЧЕТОВ УСТОЙЧИВОСТИ