Билет 46. Теория тектоники литосферных плит – современная геологическая теория

В 50-е годы ХХ в. геологические и геофизические исследования Земли проводились исключительно интенсивно. Особенно это касалось океанов, о строении дна которых и тем более о структуре земной коры в них и ее свойствах мало что было известно. Накопление новых данных началось еще в первой половине ХХ в., но прошло еще много времени, прежде чем полученные факты помогли рождению новой геологической теории.

Решающий вклад в современную геологическую теорию тектоники литосферных плит внесли следующие открытия:

1) установление грандиозной, около 60 тыс. км системы срединно-океанических хребтов и гигантских разломов, пересекающих эти хребты;

2) обнаружение и расшифровка линейных магнитных аномалий океанического дна, дающих возможность объяснить механизм и время его образования;

3) …
установление места и глубин гипоцентров (очагов) землетрясений и решение их фокальных механизмов, т.е. определение ориентировки напряжений в очагах;

4) развитие палеомагнитного метода, основанного на изучении древней намагниченности горных пород, что дало возможность установить перемещение континентов относительно магнитных полюсов Земли.

Заслуга в создании «тектоники плит», которая была сформулирована к концу 60-х гг.ХХ в.принадлежит Тузо Уилсону (Канада), Ксавье Ле Пишону (Франция) и Джейсону Моргану (США).

Основная идея этой новой теории базировалась на признании разделения литосферы, т.е. верхней оболочки Земли, включающую земную кору и верхнюю мантию до астеносферы, на 7 самостоятельных крупных плит, не считая ряда мелких. Эти плиты в своих центральных частях лишены сейсмичности, они тектонически стабильны, а вот по краям плит сейсмичность очень высокая, там постоянно происходят землетрясения. Следовательно, краевые зоны плит испытывают большие напряжения, т.к. перемещаются относительно друг друга.

Определив характер напряжений в очагах землетрясений на краях плит, удалось выяснить, что в одних случаях это растяжение, т.е. плиты расходятся и происходит это вдоль оси срединно-океанических хребтов, где развиты глубокие ущелья – рифты (англ. «рифт» – расщелина). Подобные границы, маркирующие зоны расхождения литосферных плит называются дивергентными(англ. дивергенс – расхождение)

На других границах плит в очагах землетрясений, наоборот, выявлена обстановка тектонического сжатия, т.е. в этих местах литосферные плиты движутся навстречу друг другу со скоростью, достигающей 10-12 см/год. Такие границы получили название конвергентных(англ. конвергенс – схождение), а их протяженность также близка к 60 тыс. км.

Существует еще один тип границ литосферных плит, где они смещаются горизонтально относительно друг друга, как бы сдвигаются, о чем говорит и обстановка скалывания в очагах землетрясений в этих зонах. Они получили название трансформных разломов(англ. трансформ – преобразовывать), т.к. передают, преобразуют движения от одной зоны к другой.

Некоторые литосферные плиты сложены как океанической, так и континентальной корой одновременно. Например, Южно-Американская единая плита состоит из океанической коры западной части южной Атлантики и из континентальной коры Южно-Американского континента.

Только одна, Тихоокеанская плита целиком состоит из коры океанического типа.

Когда мы говорим о плитах, следует помнить, что Земля круглая, следовательно, они перемещаются по сфере.

Почему перемещаются литосферные плиты? Общепринятой точкой зрения считается признание конвективного переноса вещества мантии. Поверхностным выражением такого явления являются рифтовые зоны срединно-океанических хребтов, где относительно более нагретая мантия поднимается к поверхности, подвергается плавлению и магма изливается в виде базальтовых лав в рифтовой зоне и застывает. Далее в эти застывшие породы вновь внедряется базальтовая магма и раздвигает в обе стороны более древние базальты. И так происходит много раз. При этом океаническое дно как бы наращивается, разрастается. Подобный процесс получил название спрединга(англ. спрединг – развертывание, расстилание).

Когда был установлен процесс спрединга сразу же встал вопрос о том, куда же девается океаническая кора, если радиус Земли не увеличивается.

Где-то она должна поглощаться, но где? И такие конвергентные зоны были найдены и названы зонами субдукции(англ. сабдакшн – погружение).

Располагаются они по краям Тихого океана и на востоке Индийского. Тяжелая и холодная океаническая литосфера подходя к более толстой и легкой континентальной, уходит под нее, как бы подныривает. Если в контакт входят две океанические плиты, то погружается более древняя, т.к. она тяжелее и холоднее, чем молодая плита.

Зоны, где происходит субдукция, морфологически выражены глубоководными желобами, а сама погружающаяся океаническая холодная и упругая литосфера хорошо устанавливается по данным сейсмической томографии – объемного «просвечивания» глубоких недр планеты.

Когда океаническая плита при подходе к континентальной начинает резко

изгибаться, в ней возникают напряжения, которые разряжаясь, провоцируют

землетрясения. Гипоцентры или очаги землетрясений четко маркируют границу трения между двумя плитами и образуют наклонную сейсмофокальную зону, погружающуюся под континентальную литосферу до глубин в 700 км.

Впервые эту зону обнаружил японский геофизик Кию Вадати в 1935 г., а в 1955 г. американский сейсмолог Хуго Беньоф подробно описал эти зоны, которые с тех пор и стали называться зонами Беньофа.

Погружение океанической литосферы приводит еще к одним важным последствиям. При достижении ею на определенной глубине в 100-200 км высоких температур и давлений из нее выделяются флюиды – особые, перегретые минеральные растворы, которые вызывают плавление горных пород континентальной литосферы и образование магматических очагов, питающих цепи вулканов, развитых параллельно глубоководным желобам на активных окраинах Тихого океана и на восточной окраине Индийского океана. Вулканические цепи располагаются тем ближе к глубоководному желобу, чем круче наклонена субдуцирующая океаническая литосфера.

Таким образом, благодаря субдукции на активной континентальной окраине наблюдается сильно расчлененный рельеф, высокая сейсмичность и энергичная вулканическая деятельность.

Говоря о субдукционных процессах следует сказать о судьбе осадков, которые перекрывают океаническую литосферу. Край плиты, под которую субдуцирует океаническая, подрезает осадки, скопившиеся на ней, как нож скрепера или бульдозера, деформирует эти отложения и приращивает их к континентальной плите в виде аккреционного клина(англ. аккрешион – приращение). Вместе с тем какая-то часть осадочных отложений, погружается вместе с плитой в глубины мантии. В ряде других мест погружающаяся океаническая литосферная плита разрушает, эродирует край континентальной литосферы и увлекает за собой вглубь ее фрагменты.

Кроме явления субдукции существует т.н. обдукция, т.е. надвигание океанической литосферы на континентальную, примером которой является огромный 500х100 км тектонический покров на восточной окраине Аравийского полуострова, сложенный типичной океанической корой, перекрывающей древние докембрийские толщи Аравийского щита.

Также следует упомянуть о столкновении или коллизиидвух континентальных плит, которые в силу относительной легкости слагающего их материала, не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением. Так, например, возникли Гималайские горы, когда 50 млн. лет назад Индостанская плита столкнулась с Азиатской. Так сформировался Альпийский горно-складчатый пояс при коллизии Африкано-Аравийской и Евразийской континентальных плит.

Теория тектоники литосферных плит впервые в истории геологии носит глобальный характер, т.к. она касается всех районов земного шара и позволяет объяснить их историю развития, геологическое и тектоническое строение. На сегодняшний день этой теории нет разумной альтернативы и она вполне закономерно сменила господствовавшую до этого геосинклинальную концепцию, вобрав из нее все наиболее ценное.